And operation in android

8 ways to do asynchronous processing in Android and counting

May 29, 2015 · 7 min read

Android provides several API’s to do asynchronous processing, compound these with what Java provides and you have (probably) dozens of ways to perform asynchronous tasks.

There is a tendency to just use Java threads or Android AsyncTasks for everything since they are well known and can do what you want. However, not all API is equal, choosing the right method for your requirements can make your code stable, cleaner, easier to read and more intuitive.

With that said, let’s jum p into 7 ways of performing asynchronous jobs in Android. The options are sorted first by being part of the Android API or Java, then by how frequently I have encountered or used them.

AsyncTask

Perhaps the best known of the asynchronous API, AsyncTask is easy to implement and returns results on the main thread. There are some issues with AsyncTask, for example, they are not aware of the activity or fragment lifecycle and so it is the programmer’s responsibility to handle the AsyncTasks behaviour when the activity is destroyed. This means that they are not the best option for long running operations and also, if the app is in the background and the app is terminated by Android, your background processing is also terminated.

IntentService

This is the defacto choice for long running processing on Android, a good example would be to upload or download large files. The upload and download may continue even if the user exits the app and you certainly do not want to block the user from being able to use the app while these tasks are going on.

Loader

Loaders are a complex topic, any single implementation of Loaders probably deserved a post all for itself. For now it would be worth pointing out that Loaders were introduced in Android Honeycomb and are part of the compatibility library. They are aware of Fragment and Activity lifecycle and can even cache loaded data.

I would like to bring attention to AsyncTaskLoaders as they solve a lot of problems that are inherent to AsyncTask. Android Design Patterns has an amazing write-up on Loaders and I recommend reading it to get a deeper understand of Loaders.

JobScheduler and GcmNetworkManager

The reason I’m bundling these 2 together is because they effectively are similar. JobScheduler was released in API 21 and as yet there is not official compatibility version from Google (Evan Tatarka has filled the void with JobSchedulerCompat). However, GcmNetworkManager that is bundled as part of Google Play 7.5 is something similar but specifically for network operations.

Using JobScheduler is a little complex, luckily there is a sample of how to use JobScheduler from Google. Effectively, you have to create a Service and create a job using JobInfo.Builder that specifies your criteria for when to run the service; such as being on a unmetered network, or when the app is charging. It is important to remember that there is no guarantee that your code will be executed as soon as these conditions are met or the order of the execution. Below is an extract from Google’s code on how to schedule a job.

I’ll let you see the GcmNetworkManager page for example code on how to use it. The general concept is similar where you have to schedule a Service to run when certain criteria are met. The Scheduled Tasks can be One-off or Periodic.

CountDownTimer

No prizes for guessing what this is used for. This is very easy to use however it is context sensitive, so if you exit your Activity or Fragment, you need to clean this up by cancelling it. To be clear, there really is nothing Asynchronous about CountDownTimer. If you look at it’s source, it simply posts delayed messages on a Handler which means that it will run on whatever thread you launch it from and onTick() and onFinish() will be executed on whatever thread you run the CountDownTimer from so you can do UI updates in it. For this reason, it’s also important to not do any heavy operations onTick() or onFinish(). The reason CountDownTimer is included in the list is because using this class does not block the user from using the app even when the CountDownTimer is initialised from the main thread, effectively giving a asynchronous effect. Also keep in mind, if your update intervals are small and your processing is time consuming, you can have a back-pressure problem which will result in blocking of your execution thread.

Читайте также:  Android tab in 5000

Java Threads or Android HandlerThread

Java Threads are rather straight forward to implement. However, they are best to avoid in Android. I have seen them used in all sorts of instances however they are limiting as Android doesn’t really allow UI updates on the background thread. A better option may be to use AsyncTask.

Android HandlerThread, can be used to handle messages of a background thread. While the use for this is rather limited as Message handling tends to do more of a redirection rather than processing, it nonetheless provides us a way to perform some tasks on the background thread. A possible use may be to run a Service in a background thread.

FutureTask

FutureTask performs asynchronous processing, however, if the result is not ready yet or processing has not complete, calling get() will be block the thread.

Surprisingly I’ve used this a few time. Sometimes you want to execute a request in Google Volley in a blocking manner. Below is an example of how to do this. Note, if you do this, make sure you’re not blocking the UI thread.

It will always block you can use future.get(30, TimeUnit.SECONDS); after that time it will throw timeout exception rather than waiting indefinitely

Java Timer / ScheduledThreadPoolExecutor

An example of using Java Timer to do something after 5 seconds. These can be used to schedule some processing on a background thread. There are other ways to handle the same in Android, you could use a Handler with postDelayed or Handler with sendMessageDelayed() and the handler can run on a background thread as shown above. Also, keep in mind that since this API is not aware of the Android lifecycle, any hard reference to an Activity, Fragment or View in here is a possible memory leak.

From Java API: A ThreadPoolExecutor that can additionally schedule commands to run after a given delay, or to execute periodically. This class is preferable to Timer when multiple worker threads are needed, or when the additional flexibility or capabilities of ThreadPoolExecutor (which this class extends) are required. Delayed tasks execute no sooner than they are enabled, but without any real-time guarantees about when, after they are enabled, they will commence. Tasks scheduled for exactly the same execution time are enabled in first-in-first-out (FIFO) order of submission.

The ScheduledThreadPoolExecutor suffers from a lot of the same problems on Android as Timer and Java Threads. If you need to update the UI you’ll need to use a Handler to post messages to the UI thread or pass in a Listener. A ScheduledThreadPoolExecutor is part of Java, it’s not aware of the Activity or Fragment lifecycle and as such any Listeners will have to be cleaned up or replaced manually in order to prevent memory leaks.

Do you know more?

If you know of more useful ways to do asynchronous processing in Android, let me know in the comments. Also, feel free to follow me on LinkedIn, Google+ or Twitter.

Источник

Операционная система Android

Feb 4 · 6 min read

Читайте также:  Видеоредактор с маской андроид

Android — это операционная система с открытым исходным кодом, созданная для мобильных устройств на основе модифицированного ядра Linux. Эта ОС разработана консорциумом Open Handset Alliance, состоящим из крупных технологических компаний при организующей роли Google. Исходный код ОС представлен как часть проекта Android Open Source Project (AOSP) с лицензией Apache. Выпущенный на рынок в 2007 году Android вскоре стал самой продаваемой операционной системой в истории, благодаря своей открытой модели разработки и удобному интерфейсу. Последняя версия Android 11 вышла в 2020 году.

История развития

Проект Android появи л ся в 2003 году с целью разработки интеллектуальных мобильных устройств. Начинался он с разработки ОС для цифровых фотокамер, но вскоре акцент сместился на мобильные телефоны из-за их большой распространенности на рынке. В 2005 году проект приобрел Google и в качестве основы для этой ОС было выбрано ядро Linux за счет его гибкости и возможности обновления.

С целью разработки платформы с открытым исходным кодом для мобильных устройств в 2007 году Google сформировала Open Handset Alliance с несколькими производителями оборудования и операторами беспроводной связи. В то время каждый производитель выпускал мобильные телефоны на базе собственной платформы, с ограниченными возможностями для сторонних приложений. Альянс заявил, что открытая платформа обеспечит тесное сотрудничество между производителями и разработчиками, чтобы ускорить производство недорогих инновационных продуктов и приложений.

Платформа Android была представлена в 2007 году и вышла на рынок на следующий год. Поначалу ей мешал ограниченный набор функций и небольшая база пользователей по сравнению с конкурентами Symbian и Windows. Однако возможность обновления стала самым большим преимуществом этой ОС, поскольку каждое обновление давало новые функции и улучшенную производительность. Из-за «сладости, которую они приносят в нашу жизнь», первые версии были названы в честь десертов, в алфавитном порядке, например Cupcake, Jellybean и KitKat. Однако вскоре у Google закончились десерты, и с 2019 года новые версии ОС получают номера, начинающиеся с Android 10. Лицензия с открытым исходным кодом также помогла увеличить популярность этой ОС среди производителей мобильных устройств, поскольку они могут теперь модифицировать ОС под свои требования, не влияя при этом на разработку приложений.

Но самая главная особенность в том, что Android — это больше, чем просто операционная система. Он во многом уравнял мобильные устройства с персональными компьютерами, позволив разработчикам писать приложения независимо от аппаратной платформы устройства. Это привело к созданию глобальной платформы для приложений и укрепило позиции Android, как передовой мобильной платформы, и в 2011 году он стал самой продаваемой операционной системой для смартфонов и для планшетов в 2013 году. Сегодня на Android работает множество электронных устройств, включая смарт-камеры, часы, медиаплееры и многое другое.

Архитектура

Первоначально Android разрабатывался для архитектуры ARM, а затем был расширен для поддержки архитектур x86 и x86–64. Однако в целом Android не заботится об аппаратном обеспечении устройства из-за разнообразия и множества типов среди компонентов в мобильных устройствах.

Основой ОС Android является модифицированная версия ядра Linux LTS, которая непосредственно взаимодействует с оборудованием. Драйверы, необходимые для работы устройства, реализуются производителями оборудования и добавляются в ядро. Это позволяет производителям оборудования разрабатывать драйверы для хорошо известного ядра, а разработчикам ОС игнорировать разнообразие оборудования. Android 11 поддерживает версии ядра 4.14, 4.19 и 5.4.

Особенности оборудования дополнительно маскируются также реализуемыми производителями уровнями аппаратной абстракции, которые предоставляют стандартные интерфейсы для высокоуровневых структур, чтобы обеспечить доступ к аппаратному обеспечению устройства, не заботясь при этом о реализации драйверов.

Android Runtime (ART) — это виртуальная машина, которая выполняет код приложения, содержащийся в файлах Dalvik Executable (DEX). Она управляет компиляцией кода, отладкой и очисткой памяти. Каждое приложение работает со своим собственным экземпляром ART, то есть в своей собственной виртуальной машине, чтобы обеспечить изоляцию кода. ART заменил Dalvik в качестве виртуальной машины Java для Android в 2013 году, поскольку его компиляция Ahead-of-Time обеспечила лучшую производительность по сравнению с компиляцией Just-in-Time у последней.

Собственные библиотеки C/C ++ являются важной частью операционной системы, поскольку большинство основных компонентов Android написаны на собственном коде. Инфраструктура Java API — это шлюз в ОС для всех пользовательских приложений. Он предоставляет множество сервисов для приложений в виде вызовов Java API, включая менеджеры действий, ресурсов и уведомлений, поставщиков контента и систему просмотра. Именно поэтому приложения для Android в основном разрабатываются на Java, хотя собственные библиотеки обеспечивают некоторую поддержку C/C++. Совсем недавно также поддерживался и Kotlin, он даже предпочитался Google для разработки приложений Android. Код компилируется Android Software Development Kit (SDK) и архивируется в виде пакета Android (APK).

Читайте также:  Андроид не включается после обновления системы

Android против Linux

Хотя некоторые считают Android дистрибутивом Linux, он имеет мало общего с обычной ОС Linux.

В традиционном стеке Linux ядро выполняет большую часть системных функций, включая управление памятью и файлами, аппаратное взаимодействие и планирование процессов. Системные функции предоставляются приложениям через библиотеки и вызовы API на языке Си. Именно поэтому GNU C является более важной библиотекой в Linux. Пользователи взаимодействуют с системой через оболочки, которые транслируют пользовательские команды в системные вызовы.

С другой стороны, Android можно рассматривать как пользовательское приложение, работающее в Linux. ОС использует ядро для взаимодействия с оборудованием и управления системой, а затем предлагает свои функции другим приложениям через интерфейс API. Этот интерфейс написан полностью на Java, и даже функции библиотек C/C ++ предложены в оболочках Java. В Android нет оболочки, хотя некоторые утилиты командной строки поддерживаются через приложение Toybox.

Кроме того, Android оптимизирован для мобильных устройств, которые обычно обладают малой вычислительной мощностью, имеют небольшой объем памяти и работают от батарей. По умолчанию, в качестве библиотеки C, вместо GNU, он использует Bionic из-за пониженных требований к памяти и процессору. При нехватке памяти, Android может уничтожить наименее используемые процессы и сбросить блоки разделяемой памяти. Кроме того, здесь реализуется уникальная система управления питанием, в которой устройство остается в спящем режиме, потребляя минимальную мощность до тех пор, пока процесс не запросит ресурс.

Ядро Android

Перед установкой на устройство само ядро Linux подвергается модификации несколькими участниками проекта. Во-первых, разработчики Android оптимизируют ядро LTS для мобильных устройств, вносят коррективы в функции Android и оставляют код как общее ядро AOSP. Разработчики AOSP реализуют большинство изменений в виде драйверов устройств, чтобы гарантировать внесение минимальных изменений в основной код ядра. Это позволяет с минимальными изменениями объединять обновления базового ядра в ACK. Поставщики оборудования добавляют драйверы и уровни абстракции для создания ядра поставщика. Затем, производители устройств обновляют ядро в соответствии со своими требованиями, реализуя новые драйверы или даже улучшая систему. Это ядро, в конечном счете, устанавливается на выпускаемые производителем устройства.

Разработка приложения

Основной принцип разработки в Android заключается в том, чтобы абстрагироваться от вариативности оборудования и предоставить унифицированный интерфейс для приложений. Это достигается запуском всех приложений на виртуальных машинах Java, подобных Dalvik или ART. Еще более способствует этой абстракции и упрощает разработку приложений комплект, состоящий из инфраструктуры Java API и SDK Android. Интерфейс API выполняет всю сложную работу, обеспечивая приложениям доступ к системным ресурсам лишь через вызов функции, в то время как SDK предоставляет визуальные инструменты для создания макетов приложений и управления вводом данных пользователя.

Android предоставляет приложениям большую часть своих функций через службы (services). Служба — это приложение, которое выполняет длительные операции в фоновом режиме. Она не предоставляет пользовательского интерфейса и доступна только через платформу API. Службы также могут выполнять операции в приоритетном порядке и сообщениями уведомлять пользователя. Служба также может быть привязана к приложению и обеспечивать интерфейс клиент-сервер.

Стек Android также включает вторую операционную систему Trusty. Она работает параллельно с основной операционной системой и обеспечивает доверенную среду для изолированного выполнения. В основном она используется для мобильных платежей, безопасного банковского обслуживания, обработки паролей и других процессов, требующих безопасности и конфиденциальности.

Заключение

При первых анонсах Open Handset Alliance их планы по взаимодействию при разработке открытой и многоцелевой платформы представлялись не более чем громким заявлением. Однако через десять лет платформа Android произвела революцию, и не только в мобильной индустрии. Фактически, она породила совершенно новые отрасли промышленности и коренным образом изменила наш образ жизни, работы и общения.

Источник

Оцените статью