Андроид arm64 что это

Что такое архитектура процессоров и как её определить?

Термин архитектура процессора не имеет устойчивого объяснения. По сути, архитектура включает в себя комбинацию из: микроархитектур, включающих в себя основные части процессора и методы их взаимодействиями между собой; набора команд, начиная от модели исполнения и заканчивая форматами данных и микрокода.

Если рассматривать архитектуру процессоров со стороны аппаратной части ПК, то мы увидим определенный набор характеристик, которому соответствует то или иное семейство процессоров, иными словами, внутренняя их конструкция. Со стороны программистов, архитектура представляет набор определенных команд, их структуру и метод использования.

Одной из самых популярных мобильных архитектур на данный момент является ARM, разработкой которой занимается ARM Limited. Остальные компании попросту лицензируют технологию ARM и на базе данной лицензии выпускают свои процессоры, сюда можно отнести Qualcomm, Nvidia с их чипами Tegra, всем известные Mediatek, чипы от Apple и, конечно же, Samsung с Exynos.

Второй по значимости можно считать архитектуру x86, за разработку которой отвечает не менее известная компания Intel. До недавнего времени, данная архитектура использовалась крайне редко и то на бюджетных устройствах, но со временем она начала набирать популярность и теперь занимает свою нишу на рынке мобильных процессоров.

По сути, обычный пользователь не заметит разницы от использования смартфонов/планшетов на разных архитектурах и это не удивительно, Android адаптируется под любые среды и отлично работает на всех архитектурах. Единственным минусом является несовместимость отдельно взятых приложений/игр, заточенных под те или иные архитектуры.

Для этих целей можно использовать бесплатные приложения доступные в Google Play. Наиболее простой и известной в использовании программой является Droid Hardware Info.

  1. Скачиваем, устанавливаем и запускаем программу.
  2. Попадем на вкладку «Устройство» с описанием модели нашего девайса.

Источник

Русские Блоги

Android arm64-v8a, armeabi-v7a, armeabi, x86 подробное объяснение

Недавно при упаковке с флаттером я столкнулся с ситуацией, когда упаковка не могла быть напечатана. Я долго проверял причину и обнаружил, что это было вызвано отсутствием конфигурации руки. После того, как она была экипирована, она разыгралась. Я воспользовался этой возможностью, чтобы изучить abi с нуля.

перед началом

Прежде чем начать, вам нужно знать lib, libs и т. Д.
1. lib и libs
Ссылки на те, что помещены в lib, включены в библиотеки.
Файлы, помещенные в библиотеки, будут автоматически включены редактором. Так что не ставьте API в библиотеках.
Содержимое библиотеки lib не будет упаковано в APK, содержимое библиотеки li будет упаковано в APK

Два . так библиотека
Библиотека динамических ссылок, скомпилированная из NDK.
Некоторые важные алгоритмы шифрования или базовые протоколы обычно пишутся на языке c, а затем вызываются в java. Это позволяет избежать просмотра исходного кода приложения после декомпиляции.

Три . как хранить так библиотеки
Правильная позиция для размещения файла .so — это два предложения:
• Чтобы уменьшить размер apk, оставьте только две папки armeabi и armeabi-v7a и убедитесь, что число .so в этих двух папках одинаково
• Для стороннего .so, который предоставляет только версию armeabi, сделайте копию в папку armeabi-v7a
Правила хранения так:
Вы должны предоставить .so файлы, оптимизированные для каждого ABI, насколько это возможно, но поддерживаются все или все: вы не должны смешивать их. Вы должны предоставить соответствующий файл .so для каждого каталога ABI.
По вопросам хранения вы можете посмотретьЭта
4. Какова роль armeabi и т. Д. Под libs
хранит библиотеку .so, которая в основном совместима с различными устройствами, а также, как можно сказать, особенно совместима с архитектурой ЦП различных телефонов Android.
Давайте потянем процессор Android
Тип процессора устройства Android (часто называемый «ABI»)

Введение в архитектуру

Ранние системы Android почти только поддерживали архитектуру процессора ARMv5, а затем были разработаны для поддержки семи различных архитектур процессоров: ARMv5, ARMv7 (с 2010 года), x86 (с 2011 года), MIPS (с 2012 года), ARMv8 , MIPS64 и x86_64 (с 2014 года), каждый связан с соответствующим ABI.
Двоичный интерфейс приложения (двоичный интерфейс приложения) определяет, как двоичные файлы (особенно файлы .so) работают на соответствующей системной платформе, от используемого набора инструкций, выравнивания памяти до доступного Библиотека системных функций. В системе Android каждая архитектура процессора соответствует ABI: armeabi, armeabi-v7a, x86, mips, arm64-v8a, mips64, x86_64.
Но последние официальные документы Google удалили mips и armv5, как показано на рисунке:

Анализ каждой версии выглядит следующим образом:
• mips / mips64: редко используется на мобильных телефонах и может игнорироваться (последняя документация Google больше не поддерживается)
• x86 / x86_64: мобильные телефоны с архитектурой x86 будут включать в себя инструмент динамического транскодирования набора инструкций под названием Houdini, предоставляемый Intel для обеспечения совместимости с arm .so, затем рассмотрите x86 1% или менее Доля рынка, две .so, связанные с x86, также незначительны
• armeabi: ARM v5. Это довольно старая версия, в которой отсутствует аппаратная поддержка для вычислений с плавающей запятой, и имеются узкие места в производительности, когда требуются большие объемы вычислений.
• armeabi-v7a: ARM v7
• arm64-v8a: поддержка 64-бит,Текущая основная версияХотя многие блоги в Интернете говорят, что версия v7 является основной версией, я лично протестировал многие мобильные телефоны, все из которых основаны на архитектуре arm64-v8a. Тестовые модели включают Xiaomi 5-Xiaomi 9, Huawei P30, Huawei mate10 и Charm Blue 2. архитектура v8
Запрос командной строки ЦП мобильного телефона:

Нет картины без правды:

Существует только один неизвестный телефон с операционной системой Android 4.3, который использует архитектуру v7.

Для 64-битных телефонов и 64-битных процессоров

ARM64-битный процессор и компьютерный 64-битный процессор — это две совершенно несовместимые концепции: он не является 64-битной нативно совместимой с 32-битными программами, но работает 32 через 32-битную архитектуру, интегрированную в 64-битный процессор. Битовая программа. Проще говоря, он не запускает 32-разрядные программы в 64-разрядной форме, но запускает 32-разрядные программы в 32-разрядной форме.

Поскольку новый 64-разрядный процессор в настоящее время включает в себя две архитектуры, а технология процесса не была улучшена (28 нм), в то же время на мобильных телефонах и планшетах площадь чипа строго ограничена и не может быть чрезмерно увеличена, что приводит к среднему распределению 64-разрядных процессоров ARM. Количество транзисторов в каждой архитектуре резко сократилось, то есть из 32-разрядной архитектуры 64-разрядных процессоров для 32-разрядных процессоров с одинаковыми характеристиками они не только не улучшились, но и производительность снизилась в определенном масштабе. Однако производители процессоров должны объяснить потребителям, как лучше продвигать 64-разрядные системы, поэтому производители должны повысить производительность в других аспектах, чтобы компенсировать потери, вызванные сокращением числа транзисторов ЦП. Например: замените более мощный графический процессор, увеличьте пропускную способность памяти, многоядерный виртуальный одноядерный для повышения производительности одноядерного, совместные поставщики программного обеспечения для работы, чтобы изменить веса работы (повысить оценку GPU, снизить вес процессора) и т. Д. Таким образом, приобретая сильные стороны и избегая недостатков и, наконец, попадающих в руки потребителей, они работают с запущенным программным обеспечением, оно действительно улучшилось, пользователи довольны, карманы производителя также выпирают.

Таким образом, битовый процессор ARM64 более точно называется ARM32 + 64 в строгом смысле слова. По сравнению с битовым процессором ARM32, он имеет место для регресса и возможности для улучшения, но именно из-за регрессии, который стимулировал прогресс ARM Определено, что он внесет смелые и смелые изменения, и это должно быть улучшением. Но действительно ли ARM64 полезен для мобильных телефонов? Я могу только сказать, что это действительно бесполезно в данный момент, но это может произойти в будущем. (Собранный в другом месте) Таким образом, в строгом смысле ARM64-битный процессор более точно называется ARM32 + 64. По сравнению с ARM32-битным процессором он имеет некоторые недостатки и возможности для улучшения, но это из-за Эта регрессия подтолкнула ARM к решимости добиться прогресса, что позволило ему внести радикальные изменения, что, по-видимому, является улучшением. Но действительно ли ARM64 полезен для мобильных телефонов? Я могу только сказать, что это действительно бесполезно в данный момент, но это может произойти в будущем. (Искал в другом месте)

Настоящий 64-разрядный мобильный телефон не просто остается на процессоре. Если его называют 64-разрядным мобильным телефоном только потому, что его процессор 64-разрядный, мы можем без колебаний сказать, что это может быть ложной пропагандой. К счастью, Lenovo Очень умно, когда были выпущены A678t и A805e, они говорили только о телефонах с 64-битным процессором.
«64-разрядный телефон» и «64-разрядный телефон» — это две разные концепции: если процессор содержит 64 архитектурных бита, его можно назвать «64-разрядным процессором» «Мобильный телефон», этот вид мобильного телефона, возможно, не сможет запускать 64-разрядные программы, но используется только для захвата рынка, по сравнению с 32-разрядными мобильными телефонами, преимущество не очевидно.

«64-разрядный мобильный телефон» отличается: он содержит 64-разрядный процессор, 64-разрядную стандартную систему, 64-разрядную виртуальную машину Android и 64-разрядную программу. Это настоящий 64-разрядный мобильный телефон!
Представители Google заявили, что Android уже давно поддерживает 64-разрядные версии, это правда, от Android4.0 до Android4.4, системы Android поддерживают 64-разрядное оборудование, но это Это означает только то, что базовый драйвер поддерживает 64-битные и может работать на 64-битном оборудовании, и ничего более. Однако программное обеспечение, работающее на верхнем уровне, будь то виртуальная машина Dalvik или виртуальная машина ART, является 32-разрядным. Другими словами, до тех пор, пока ваша система мобильной связи работает под управлением Android 4.0-4.4, даже если ваш процессор 64-разрядный, вы можете запускать 32-разрядные программы только на 32-разрядной виртуальной машине, даже если перед вами стоят настоящие 64-разрядные программы, Это не может быть установлено. ,

Однако Google официально объявил об обязательной 64-битной архитектуре в начале этого года.

Еще в январе этого года (2019 г.) Google выпустил уведомление о том, что с 1 августа этого года перечисленные приложения, помимо предоставления 32-разрядных версий, также должны предоставлять 64-разрядные версия.

Следовательно, больше невозможно принудительно использовать только архитектуру armeabi перед проектом.
Что конкретно означает поддержка 64-битной версии?
Если ваше приложение написано полностью на Java или Kotlin и не содержит никакой встроенной поддержки, то это означает, что приложение уже поддерживает 64-битную версию.
Однако в приложении используется любая встроенная поддержка (например, библиотека), поэтому вам необходимо обеспечить разные версии поддержки этих файлов и разных архитектур ЦП.
Следует отметить, что иногда в нашем собственном коде встроенная поддержка действительно не используется, но в нее включены некоторые сторонние библиотеки, используемые в приложении.
В настоящее время наиболее надежным способом является анализ файла APK, созданного окончательной упаковкой, для определения необходимости обеспечения поддержки 64-разрядной архитектуры.

Конфигурация упаковки

Трещина
Эта команда может быть заключена в соответствии с различными правилами, такими как abi, плотность экрана (например, ldpi, hdpi и т. д.)

Включить включено, а исключить не включено. Каждый элемент, включенный в конфигурацию, будет генерировать пакет apk.

Однако эта конфигурация создаст два пакета, один из которых содержит только библиотеку x86 so, а другой — только библиотеку armabi so. Очевидно, не соответствует потребностям

Фильтр ndk
Эта инструкция может быть настроена для упаковки только той библиотеки, которую вы настраиваете, и она не будет упакована, если она не настроена, что очень гибко.

Эта конфигурация упакует библиотеку so из трех пакетов armeabi, armeabi-v71, arm64-v8a в apk, в отличие от split, которая будет воспроизводить apk для каждого пакета.

Источник

ARM против x86: В чем разница между двумя архитектурами процессоров?

Вы наверняка знаете, что мир процессоров разбит на два лагеря. Если вы смотрите это видео со смартфона, то для вас работает процессор на архитектуре ARM, а если с ноутбука, для вас трудится чип на архитектуре x86.

А теперь еще и Apple объявила, что переводит свои Mac на собственные процессоры Apple Silicon на архитектуре ARM. Мы уже рассказывали, почему так происходит. А сегодня давайте подробно разберемся, в чем принципиальные отличия x86 и ARM. И зачем Apple в это все вписалась?

Итак, большинство мобильных устройств, iPhone и Android’ы работают на ARM’е. Qualcomm, HUAWEI Kirin, Samsung Exynos и Apple A13/A14 Bionic — это все ARM-процессоры.

А вот на компьютере не так — там доминирует x86 под крылом Intel и AMD. Именно поэтому на телефоне мы не можем запустить Word с компьютера.

x86 — так называется по последним цифрам семейства классических процессоров Intel 70-80х годов.

Чем же они отличаются?

Есть два ключевых отличия.

Первое — это набор инструкций, то есть язык который понимает процессор

x86 процессоры используют сложный набор инструкций, который называется CISC — Complex Instruction Set Computing.

ARM процессоры наоборот используют упрощенный набор инструкций — RISC — Reduced Instruction Set Computing.

Кстати ARM расшифровывается как Продвинутые RISC машины — Advanced RISC Machines.

Наборы инструкций ещё принято назвать архитектурой или ISA — Instruction Set Architecture.

Второе отличие — это микроархитектура. Что это такое?

От того на каком языке говорят процессоры, зависит и то, как они проектируются. Потому как для выполнения каждой инструкции на процессоре нужно расположить свой логический блок. Соответственно, разные инструкции — разный дизайн процессора. А дизайн — это и есть микроархитектура.

  • x86 — CISC
  • ARM — RISC

Итак, запомнили. Говорим x86 — подразумеваем архитектуру CISC, ARM — это RISC.

Но как так произошло, что процессоры стали говорить на разных языках?

История CISC


Памятка программиста, 1960-е годы. Цифровой (машинный) код «Минск-22».

Всё началось в 1960-х. Поначалу программисты работали с машинным кодом, то есть реально писали нолики и единички. Это быстро всех достало и появился Assembler. Низкоуровневый язык программирования, который позволял писать простые команды типа сложить, скопировать и прочее. Но программировать на Assembler’е тоже было несладко. Потому как приходилось буквально “за ручку” поэтапно описывать процессору каждое его действие.

Поэтому, если бы вы ужинали с процессором, и попросили передать его вам соль, это выглядело бы так:

  • Эй процессор, посмотри в центр стола.
  • Видишь соль? Возьми её.
  • Теперь посмотри на меня.
  • Отдай мне соль. — Ага, спасибо!
  • А теперь снова возьми у меня соль.
  • Поставь её откуда взял
  • Спасибо большое! Продолжай свои дела.
  • Кхм… Процессор, видишь перец?
  • И так далее.

В какой-то момент это всё задолбало программистов. И они решили: Хей, а почему бы нам просто не не написать инструкцию «Передай мне соль»? Так и сделали. Набор таких комплексных инструкций назвали CISC.

Этот подход стал настоящим спасением как для разработчиков, так и для бизнеса. Захотел клиент новую инструкцию — не проблема, были бы деньги — мы сделаем. А деньги у клиентов были.

Недостатки CISC

Но был ли такой подход оптимальным. С точки зрения разработчиков — да. Но вот микроархитектура страдала.

Представьте, вы купили квартиру и теперь вам нужно обставить её мебелью. Площади мало, каждый квадратный метр на счету. И вот представьте, если бы CISC-процессор обставил мебелью вам гостиную, он бы с одной стороны позаботился о комфорте каждого потенциального гостя и выделил бы для него своё персональное место.

С другой стороны, он бы не щадил бюджет. Диван для одного человека, пуф для другого, кушетка для третьего, трон из Игры Престолов для вашей Дейенерис. В этом случае площадь комнаты бы очень быстро закончилась. Чтобы разместить всех вам бы пришлось увеличивать бюджет и расширять зал. Это не рационально. Но самое главное, CISC-архитектура существует очень давно и те инструкции, которые были написаны в 60-х годах сейчас уже вообще не актуальны. Поэтому часть мебели, а точнее исполнительных блоков, просто не будут использоваться. Но многие из них там остаются. Поэтому появился RISC…

Преимущества RISC

С одной стороны писать на Assembler’е под RISC процессоры не очень-то удобно. Если в лоб сравнивать код, написанный под CISC и RISC процессоры, очевидно преимущество первого.

Так выглядит код одной и той же операции для x86 и ARM.

x86

  • MOV AX, 15; AH = 00, AL = 0Fh
  • AAA; AH = 01, AL = 05
  • RET

ARM

  • MOV R3, #10
  • AND R2, R0, #0xF
  • CMP R2, R3
  • IT LT
  • BLT elsebranch
  • ADD R2. #6
  • ADD R1. #1
  • elsebranch:
  • END

Но так было раньше. На ассемблере уже давно никто не пишет. Сейчас за программистов всё это делают компиляторы, поэтому никаких сложностей с написанием кода под RISC-процессоры нет. Зато есть преимущества.

Представьте, что вы проектируете процессор. Расположение блоков на х86 выглядело бы так.

Каждый цветной квадрат — это отдельные команды. Их много и они разные. Как вы поняли, здесь мы уже говорим про микроархитектуру, которая вытекает из набора команд. А вот ARM-процессор скорее выглядит так.

Ему не нужны блоки, созданные для функций, написанных 50 лет назад.

По сути, тут блоки только для самых востребованных команд. Зато таких блоков много. А это значит, что можно одновременно выполнять больше базовых команд. А раритетные не занимают место.

Еще один бонус сокращенного набора RISC: меньше места на чипе занимает блок по декодированию команд. Да, для этого тоже нужно место. Архитектура RISC проще и удобнее, загибайте пальцы:

  • проще работа с памятью,
  • более богатая регистровая архитектура,
  • легче делать 32/64/128 разряды,
  • легче оптимизировать,
  • меньше энергопотребление,
  • проще масштабировать и делать отладку.

Для примера вот два процессора одного поколения. ARM1 и Intel 386. При схожей производительности ARM вдвое меньше по площади. А транзисторов на нем в 10 раз меньше: 25 тысяч против 275 тысяч. Энергопотребление тоже отличается на порядок: 0.1 Ватт против 2 Ватт у Intel. Шок.

Поэтому наши смартфоны, которые работают на ARM процессорах с архитектурой RISC, долго живут, не требуют активного охлаждения и такие быстрые.

Лицензирование

Но это все отличия технические. Есть отличия и организационные. Вы не задумывались почему для смартфонов так много производителей процессоров, а в мире ПК на x86 только AMD и Intel? Все просто — ARM это компания которая занимается лицензированием, а не производством.

Даже Apple приложила руку к развитию ARM. Вместе с Acorn Computers и VLSI Technology. Apple присоединился к альянсу из-за их грядущего устройства — Newton. Устройства, главной функцией которого было распознавание текста.

Даже вы можете начать производить свои процессоры, купив лицензию. А вот производить процессоры на x86 не может никто кроме синей и красной компании. А это значит что? Правильно, меньше конкуренции, медленнее развитие. Как же так произошло?

Ну окей. Допустим ARM прекрасно справляется со смартфонами и планшетами, но как насчет компьютеров и серверов, где вся поляна исторически поделена? И зачем Apple вообще ломанулась туда со своим Apple Silicon.

Что сейчас?

Допустим мы решили, что архитектура ARM более эффективная и универсальная. Что теперь? x86 похоронен?

На самом деле, в Intel и AMD не дураки сидят. И сейчас под капотом современные CISC-процессоры очень похожи на RISC. Постепенно разработчики CISC-процессоров все-таки пришли к этому и начали делать гибридные процессоры, но старый хвост так просто нельзя сбросить.

Но уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микро инструкции (micro-ops), которые в дальнейшем — сейчас вы удивитесь — исполняются RISC ядром.

Да-да, ребята! Те самые 4-8 ядер в вашем ПК — это тоже RISC-ядра!

Надеюсь, тут вы окончательно запутались. Но суть в том, что разница между RISC и CISC-дизайнами уже сейчас минимальна.

А что остается важным — так это микроархитектура. То есть то, насколько эффективно все организовано на самом камне.

Ну вы уже наверное знаете, что Современные iPad практически не уступают 15-дюймовым MacBook Pro с процессорами Core i7 и Core i9.

А что с компьютерами?

Недавно компания Ampere представила свой 80-ядерный ARM процессор. По заявлению производителя в тестах процессор Ampere показывает результат на 4% лучше, чем самый быстрый процессор EPYC от AMD и потребляет на 14% меньше энергии.

Компания Ampere лезет в сегменты Cloud и Workstation, и показывает там отличные цифры. Самый быстрый суперкомпьютер в мире сегодня работает на ARM ISA. С обратной стороны, Intel пытается все таки влезть в сегмент low power и для этого выпускает новый интересный процессор на микроархитектуре lakefield.

Пока у ноутбуков и процессоров от Intel есть одно неоспоримое достоинство — (охлаждение и) единство архитектуры. Пока на рынке ARM-процессоров существуют Qualcomm, Samsung, MediaTek, в мире x86 творится монополия и разработчикам сильно легче делать софт и игры под “взрослые” процессоры.

И Apple та компания, которая способна мотивировать достаточное количество разработчиков пилить под свой ARM. Но суть этого перехода скорее не в противостоянии CISC и RISC. Поскольку оба подхода сближаются, акцент смещается на микроархитектуру, которую делает Apple для своих мобильных устройств. И судя по всему микроархитектура у них крута. И они хотели бы ее использовать в своих компьютерах.

И если бы Intel лицензировал x86 за деньги другим людям, то вероятно Apple просто адаптировали свою текущую микроархитектуру под x86. Но так как они не могут этого сделать, они решили просто перейти на ARM. Проблема для нас с микроархитектурой в том, что она коммерческая тайна. И мы про нее ничего не знаем.

Итоги

Спрос на ARM в итоге вырастет. Для индустрии это не просто важный шаг, а архиважный. Линус Торвальдс говорил, что пока рабочие станции не станут работать на ARM — на рынке серверов будут использовать x86.

И вот это случилось — в перспективе это миллионы долларов, вложенных в серверные решения. Что, конечно, хорошо и для потребителей. Нас ждет светлое будущее и Apple, действительно, совершила революцию!

Редактор материала: Антон Евстратенко. Этот материал помогли подготовить наши зрители Никита Куликов и Григорий Чирков. Спасибо ребята!

Источник

Читайте также:  Odin android what is
Оцените статью