Android java application running

Потоки

Потоки позволяют выполнять несколько задач одновременно, не мешая друг другу, что даёт возможность эффективно использовать системные ресурсы. Потоки используются в тех случаях, когда одно долгоиграющее действие не должно мешать другим действиям. Например, у нас есть музыкальный проигрыватель с кнопками воспроизведения и паузы. Если вы нажимаете кнопку воспроизведения и у вас запускается музыкальный файл в отдельном потоке, то вы не можете нажать на кнопку паузы, пока файл не воспроизведётся полностью. С помощью потоков вы можете обойти данное ограничение.

Использование фоновых потоков

Чтобы быть уверенным, что ваше приложение не теряет отзывчивости, хорошим решением станет перемещение всех медленных, трудоёмких операций из главного потока приложения в дочерний.

Применение фоновых потоков — необходимое условие, если вы хотите избежать появления диалогового окна для принудительного закрытия приложения. Когда активность в Android на протяжении 5 секунд не отвечает на события пользовательского ввода (например, нажатие кнопки) или приёмник широковещательных намерений не завершает работу обработчика onReceive() в течение 10 секунд, считается, что приложение зависло. Подобные ситуации следует избегать любой ценой. Используйте фоновые потоки для всех трудоёмких операций, включая работу с файлами, сетевые запросы, транзакции в базах данных и сложные вычисления.

Android предоставляет несколько механизмов перемещения функциональности в фоновый режим.

  • Activity.runOnUiThread(Runnable)
  • View.post(Runnable)
  • View.postDelayed(Runnable, long)
  • Handlers
  • AsyncTask

Класс AsyncTask позволяет определить операции, которые будут выполняться в фоне, вы также будете иметь доступ к обработчику событий, что позволит отслеживать прогресс выполнения задач и выводить результаты в контексте главного графического потока. Подробнее об этом классе в отдельной статье.

Хотя использование AsyncTask — хорошее решение, случается, что для работы в фоновом режиме приходится создавать собственные потоки и управлять ими.

В Java есть стандартный класс Thread, который вы можете использовать следующим образом:

Данный способ подходит только для операций, связанных с временем. Но вы не сможете обновлять графический интерфейс программы.

Если вам нужно обновлять интерфейс программы, то нужно использовать AsyncTask, о котором говорилось выше, или вы можете реализовать ваш собственный класс, наследованный от Thread, используя объект Handler из пакета android.os для синхронизации с потоком GUI перед обновлением пользовательского интерфейса.

Вы можете создавать дочерние потоки и управлять ими с помощью класса Handler, а также классов, доступных в пространстве имён java.lang.Thread. Ниже показан простой каркас для переноса операций в дочерний поток.

Плохое приложение

Напишем «плохое» приложение, неправильно использующее основной поток. Однажды мы писали программу для подсчёта ворон. На этот раз будем считать чёрных котов, которые перебегают нам дорогу. Зачем они это делают — молчит наука. Может быть собранная статистика поможет разгадать тайну. Добавим на экран активности кнопки и текстовую метку. Код для щелчка кнопки.

Для имитации тяжёлой работы программа делает паузу на двадцать секунд, а потом выводит текст с подсчётом котов. Если нажать на кнопку один раз и подождать двадцать секунд, то программа отработает как положено. Но представьте себе, что вы нажали на кнопку один раз. Программа запустила паузу. Вы, не дожидаясь окончания паузы, снова нажали на кнопку. Программа должна выполнить вашу команду, но предыдущая команда ещё не отработала и наступает конфликт. Попробуйте нажать на кнопку несколько раз с небольшими перерывами. В какой-то момент приложение зависнет и выведет системное диалоговое окно:

Читайте также:  Ring extended для андроид

В реальных приложениях такое окно может разозлить пользователя и он поставит низкую оценку вашему приложению.

В данном случае ошибку вызывает не сам вывод текста в текстовой метке, который, к слову, тоже выполняется в основном потоке, а сам щелчок кнопки. Если вы закомментируете последние две строчки кода, связанные с TextView, то ошибка сохранится.

Вам необходимо перенести трудоёмкую задачу в отдельный поток. Для этого создаётся экземпляр класса Runnable, у которого есть метод run(). Далее создаётся объект Thread, в конструкторе у которого указывается созданный Runnable. После этого можно запускать новый поток с помощью метода start(). Перепишем пример.

Весь код мы перенесли в метод run(). Теперь вы можете безостановочно щёлкать по кнопке. На этот раз приложение сохранит свою работоспособность. Чтобы в этом убедиться, в код добавлено протоколирование логов Log.i(). При каждом нажатии создаётся новый поток, в котором выполняется код. Потоки друг другу не мешают и дожидаются своей очереди, когда система позволит им отработать.

Основной поток также называют UI-потоком. Имено в главном потоке можно обновить текст у текстовой метки. В создаваемых нами потоках это делать нельзя. Если вы уберёте комментарии с последнего примера и запустите проект, то получите сообщение об ошибке.

Нужен некий посредник между создаваемыми потоками и основным UI-потоком. В роли такого посредника служит класс Handler (полное название класса android.os.Handler, не перепутайте). Вам нужно создать экземпляр класса и указать код, который нужно выполнить.

После строчки кода с Log.i() добавьте вызов метода посредника.

Поток вызывает посредника, который в свою очередь обновляет интерфейс. В нашем случае посредник посылает пустое сообщение от потока.

Но бывает так, что от потока требуется получить информацию для обработки. Ниже упрощённый пример.

Запуск потока

Предположим, мы разрабатываем собственный проигрыватель. У нас есть кнопка Play, которая вызывает метод play() для воспроизведения музыки:

Теперь запустим метод в другом потоке. Сначала создаётся новый поток. Далее описывается объект Runnable в конструкторе потока. А внутри созданного потока вызываем наш метод play(). И, наконец, запускаем поток.

Усыпить поток

Иногда требуется временно приостановить поток («усыпить»):

Приоритет потоков

Для установки приоритета процесса используется метод setPriority(), который вызывается до запуска потока. Значение приоритета может варьироваться от Thread.MIN_PRIORITY (1) до Thread.MAX_PRIORITY (10):

Отмена выполнения потока

У потока есть метод stop(), но использовать его не рекомендуется, поскольку он оставляет приложение в неопределённом состоянии. Обычно используют такой подход:

Существует и другой способ, когда все запускаемые потоки объявляются демонами. В этом случае все запущенные потоки будут автоматически завершены при завершении основного потока приложения:

Читайте также:  One browser mini android

Источник

Запускаем консольные Java приложения на Android

Речь пойдёт о проекте-утилитке, который может пригодиться всякому кто изучает Java и не всегда имеет под рукой ПК для просмотра работы примера кода в полевых условиях (как-то — в метро, маршрутке, кафешке и т.д.).

Необходимость создать сие поделище возникла когда я готовился к OCJP-сертификации. После успешного прохождения оной, решил предоставить плоды своих задумок на обозрение уважаемым участникам хабрасообщества.

Ноутбука у меня нет, а запускать примеры кода на смартфоне, сидя на кухне за чашечкой чая, удобно.

Так уж повелось, что бо́льшая часть примеров для обучения обычно приводится именно в формате консольных программ. Замечательный инструмент AIDE позволяет собирать Android-приложение на основе Eclipse-проектов. Возможность, увы, недостаточная для запуска консольных примеров методом копипасты.

Дело за малым — перенаправляем потоки ввода/вывода в UI контролы:

Консольная программа стартует в отдельном потоке из обработчика activity onResume() :

Здесь же можно задавать аргументы командной строки — старый добрый args . Пример — запуск BankTellerSimulation на 10 секунд:

Поддерживается работа нескольких потоков ( SimpleThreadsTest ):

HorseRace и BankTellerSimulation — примеры более сложных многопоточных приложений (взяты из книги Thinking in Java, 4th Ed by Bruce Eckel).

Ошибки времени выполнения

Напоследок, для полноты возможностей, был добавлен консольный ввод. Пока что мои познания в области пользовательского интерфейса Android не велики. Кое-как впихнуть EditText удалось, но результат не идеален 🙂

Приглашение ввода строки ( ReadingInputTest ):

Функции меню

Exit выключает процесс через System.exit(0) .

Программа «одноразовая». Повторных перезапусков нет (не хотелось возиться с очисткой значений статических полей).

Что делает Clear — большой секрет.

Что не работает

• assert ‘ы Java. Т.е. оператор

исключение java.lang.AssertionError не кинет. Не путать с assert’ами JUnit — с ними всё в порядке!)
• Класс Console .
• Поле ввода не всегда подхватывает фокус.

Файлы проекта

Исходники можно забрать с GitHub, либо скачать zip-архив с проектами для Android Studio и Eclipse.

Источник

«Холодный» запуск Android-приложения

Всем приветъ! Давно ничего не писал.

Это будет серия постов о процессе «холодного» запуска Android приложения, с момента нажатия на иконку и до создания процесса приложения.

Общая схема

Открывая «окно»…

Перед тем как запустить новый процесс приложения, system_server создает стартовое окно используя метод PhoneWindowManager.addSplashScreen():

Стартовое окно это то, что пользователь будет видеть пока запускается само приложение. Окно будет отображаться до тех пор пока не будет запущена Activity и не будет отрисован первый кадр. То есть пока не будет завершен «холодный» запуск. Пользователь может видеть данное окно длительное время, поэтому постарайтесь сделать его приятным.

Содержимое стартового окна берется из drawable-ресурсов windowSplashscreenContent и windowBackground запускаемого Activity. Банальный пример такого окна:

Если пользователь восстанавливает Activity из режима последнего экрана(Recent screen), при этом на нажимая на иконку приложения, то system_server вызывает метод TaskSnapshotSurface.create(), чтобы создать стартовое окно из уже сделанного скриншота.

Как только стартовое окно показано пользователю, system_server готов запустить процесс приложения и вызывает метод ZygoteProcess.startViaZygote():

Читайте также:  Как разблокировать андроид рут

В коде видно, что метод ZygoteProcess.zygoteSendArgsAndGetResult() отправляет аргументы запуска через сокет Zygote-процессу.

«Разделение» Zygote-ы

Каждый процесс приложения запускается с помощью форкания(разделения) от существующего Zygote-процесса…

Вкратце об этом я писал в предыдущей статье про запуск Android-а. А теперь давайте посмотрим поглубже на происходящие процессы.

Когда система загружается процесс Zygote стартует и выполняет метод ZygoteInit.main():

Как вы видите метод ZygoteInit.main() делает 2 важные вещи:

  • Подгружает все необходимые системные библиотеки и ресурсы Android-фреймворка. Подобная предзагрузка не только экономит память но еще и экономит время запуска приложений.
  • Далее он запускает метод ZygoteServer.runSelectLoop(), который в свою очередь запускает сокет и начинает слушать вызовы данного сокета.

Когда же на сокет приходит команда на форкинг процесса, метод ZygoteConnection.
processOneCommand() обрабатывает аргументы используя метод ZygoteArguments.parseArgs() и запускает метод Zygote.forkAndSpecialize():

На заметку: Начиная с Android 10 есть оптимизационная фича под названием Unspecialized App Process, которая имеет пул не специализированных Zygote-процессов, для еще более быстрого запуска приложений.

Приложение запустилось!

После форка дочерний процесс запускает метод RuntimeInit.commonInit(), который устанавливает дефолтный UncaughtExceptionHandler. Далее, процесс запускает метод ActivityThread.main():

Тут происходят две интересные вещи:

  • Метод ActivityThread.main() создает новый поток(Thread) и вызывает метод Looper.loop(), в котором будет запущен новый инстанс Looper-а. Он будет привязан к новому потоку(который становится MainThread-ом aka UiThread) и будет работать(теоретически) бесконечно. Looper привязавшись, будет ожидать сообщений для того чтобы поместить их к своему MessageQueue.
  • Далее, метод ActivityThread.attach() делает IPC-запрос к методу ActivityManagerService.attachApplication()system_server-а, тем самым давая понять, что MainThread нашего приложения запущен и готов к работе.

Контроль над приложением

В процессе system_server метод ActivityManagerService.attachApplication() вызывает метод ActivityManagerService.attachApplicationLocked(), который завершает настройку запускаемого приложения:

Парочка ключевых выводов:

  • Процесс system_server делает IPC-запрос к методу ActivityThread.bindApplication() в процессе нашего приложения, который направляет запрос к методу ActivityThread.handleBindApplication() в MainThread-е приложения.
  • Сразу после этого, system_server планирует запуск Pending Activity, Service и BroadcastReciever-ов нашего приложения.
  • Метод ActivityThread.handleBindApplication() загружает APK-файл и компоненты приложения.
  • Разработчики имеют возможность немного повлиять на процессы перед запуском метода ActivityThread.handleBindApplication(), так что именно здесь должен начаться мониторинг холодного запуска приложения.

Давайте немного подробно разберем 3-ий пункт и узнаем что и как происходит при загрузке компонентов и ресурсов приложения. Порядок шагов такой:

  • Загрузка и создание инстанса класса AppComponentFactory.
  • Вызов метода AppComponentFactory.instantiateClassLoader().
  • Вызов метода AppComponentFactory.instantiateApplication() для загрузки и создания инстанса класса Application.
  • Для каждого объявленного ContentProvider-а, в порядке приоритета, вызов метода AppComponentFactory.instantiateProvider() для загрузки его класса и создания инстанса, после вызов метода ContentProvider.onCreate().
  • И наконец, вызов метода Application.onCreate().

Эпилог

Мы начали изучать «холодную» загрузку с очень обще-абстрагированного уровня:

Теперь мы знаем, что происходит «под капотом»:

Ну что же, это был длинный пост. Но это не все! В следующих постах мы продолжим глубокое погружение в процесс запуска Android-приложения. Оставайтесь с нами!

Источник

Оцените статью