- Getting Android’s context for unit testing #134
- Comments
- jmiecz commented May 30, 2018
- arnaudgiuliani commented May 31, 2018
- jmiecz commented May 31, 2018
- arnaudgiuliani commented Jun 1, 2018
- jmiecz commented Jun 1, 2018 •
- arnaudgiuliani commented Jun 4, 2018
- qbait commented Aug 16, 2018 •
- qbait commented Aug 17, 2018
- arnaudgiuliani commented Aug 20, 2018
- qbait commented Aug 20, 2018
- arnaudgiuliani commented Aug 20, 2018
- NurseyitTursunkulov commented May 19, 2019
- jasofalcon commented May 16, 2021
- 10 ноября 2016 г. Простые Unit-тесты в Android
- Общие сведения
- Настройка
- Local-тесты в Android
- Instrumented тесты в Android
- Заключение
- Context в Android приложении
- Что такое Context?
- Контекст приложения
- Контекст Activity
- getContext() в ContentProvider
- Когда нельзя использовать getApplicationContext()?
- Правило большого пальца
- 10 ноября 2016 г. Простые Unit-тесты в Android
- Общие сведения
- Настройка
- Local-тесты в Android
- Instrumented тесты в Android
- Заключение
Getting Android’s context for unit testing #134
Comments
jmiecz commented May 30, 2018
Is there a way to get either the Android’s context or resources to use for a unit test? The use case is, having a json file we can reference vs hard coding the json string into the class we are unit testing.
The text was updated successfully, but these errors were encountered:
arnaudgiuliani commented May 31, 2018
with Junit and Mockito we can’t recreate a «real» Android context. You can use more easily make such thing in Android instrumented tests.
I can be interesting to investigate with new nitrogen project, or more about Robolectric project if we can do something.
jmiecz commented May 31, 2018
If I were to use Robolectric, I know they offer a way to grab the context, how can I pass it to one of my modules?
arnaudgiuliani commented Jun 1, 2018
If you want to add/override the existing definition of Application , you just have to provide a module like:
And then use the androidContextModule in the list of modules that you use, at the end of the list of modules: startKoin(listOf(module1, . androidContextModule))
Do we have a direct function to create an Android context with Robotlectric?
jmiecz commented Jun 1, 2018 •
Hello @arnaudgiuliani, Below is a sample unit test using what you suggested and having success on accessing the resources! Please let me know if there is anything else I can do to help.
arnaudgiuliani commented Jun 4, 2018
Great 👍
A sample/geetting started project will gather test samples for Android. I keep you in touch!
qbait commented Aug 16, 2018 •
Unfortunately, I still have a problem with configuring robolectric and koin. I’m getting the following error
I’ve also copy and paste @jmiecz code and tried on @arnaudgiuliani koin’s sample app with the same results.
qbait commented Aug 17, 2018
In the end it works. I use version 1.0.0-beta-6
I don’t have any @Before and @After nor specific modules for tests. Is my configuration alright or it works by accident? 🙂
arnaudgiuliani commented Aug 20, 2018
Nop. For an instrumented test, your Koin container is already started via your startKoin() .
qbait commented Aug 20, 2018
What do you mean by instrumented tests @arnaudgiuliani ?
My tests are under test folder and run on jvm. Are they still called instrumented because of Robolectric
arnaudgiuliani commented Aug 20, 2018
Yes kindof. This is unit test, with Android instrumented classes.
NurseyitTursunkulov commented May 19, 2019
If you want to add/override the existing definition of Application , you just have to provide a module like:
And then use the androidContextModule in the list of modules that you use, at the end of the list of modules: startKoin(listOf(module1, . androidContextModule))
Do we have a direct function to create an Android context with Robotlectric?
where to put it?
jasofalcon commented May 16, 2021
applicationContext < >doesnt seem to exist anymore, is there a working github example with latest koin?
Источник
10 ноября 2016 г. Простые Unit-тесты в Android
Вот и настало время разобраться и написать небольшую заметку о том, что из себя представляет тестирование логики Android-приложений. К этому вопросу я пришел не сразу, однако учиться никогда не поздно!
Общие сведения
Для начала определимся, что такое тесты и зачем их нужно писать. Из Wikipedia:
Модульное тестирование, или юнит-тестирование (англ. unit testing) — процесс в программировании, позволяющий проверить на корректность отдельные модули исходного кода программы.
Идея состоит в том, чтобы писать тесты для каждой нетривиальной функции или метода. Это позволяет достаточно быстро проверить, не привело ли очередное изменение кода к регрессии, то есть к появлению ошибок в уже оттестированных местах программы, а также облегчает обнаружение и устранение таких ошибок.
Другими словами, тесты — это методы, которые проверяют работоспособность нашего кода. Но каким образом это делается? Давайте по порядку. Тест считается выполненным, если он выполнился без ошибок. А для разного рода проверок используются вспомогательные методы вроде «семейства» методов assertXXX (см. примеры ниже).
Unit-тестирование в Android можно разделить на 2 типа:
- Локальные unit-тесты (Local unit tests) — тесты, для выполнения которых используется только JVM. Они предназначены для тестирования бизнес-логики, которая не взаимодействует с операционной системой.
- Инструментальные unit-тесты (Instrumented unit tests) — тесты, с помощью которых тестируется логика, «завязанная» на Android API. Их выполнение происходит на физическом девайсе/эмуляторе, что занимает значительно больше времени, чем локальные тесты.
Выбор одного из этих 2 типов зависит от целей тестируемой логики. Естественно, если это возможно, лучше писать локальные тесты.
Также при создании тестов стоит уделить внимание организации пакетов. Существует следующая структура, которой стоит придерживаться:
- app/src/main/java — исходный код приложения;
- app/src/test/java — здесь размещаются локальные тесты;
- app/src/androidTest/java — сюда помещаем инструментальные тесты.
Настройка
Если вы почему-то не используете Android Studio, которая генерирует пакеты при создании проектов, стоит запомнить структуру выше. К тому же, IDE конфигурирует Gradle-файл модуля app:
Для упрощения написания тестов огромной популярностью пользуется фреймворк Mockito. В его возможности входит имитация и наблюдение объектов, а также вспомогательные средства проверок. Чтобы начать его использовать, добавим зависимость:
Local-тесты в Android
Теперь давайте рассмотрим 2 простейших теста, которые проверяют на соответствия 2 объекта (в нашем случае — числа):
Для этого создадим в пакете для локальных тестов класс и разместим в нем наши методы. Чтобы JUnit знал, что эти методы являются тестами, они помечаются соответствующей аннотацией @Test . Метод же assertEquals() кидает ошибку AssertionError в случае, если первый (ожидаемый) и второй (результат) не соответствуют друг другу.
Давайте запустим их (нажав правой кнопкой на класс и выбрав Run ‘ExampleUnitTest’ в появившемся меню) и посмотрим на результат выполнения:
Видно, что первый метод выполнился, а во втором произошла ошибка, т.к. 5 != (2 + 2). Также можно настроить тест на ожидаемое исключение используя параметр expected :
В таком случае тест выполнится, т.к. это исключение мы ожидали. Для длинных операций можно также указать параметр timeout и установить значение в миллисекундах. Если метод не выполнится в течение заданного времени, тест будет считаться проваленным:
Есть еще такой хитрый механизм как Matchers. К примеру, их на вход принимает метод assertThat(T actual, Matcher matcher) и возвращают методы класса org.hamcrest.CoreMatchers . Матчеры представляют собой логические операции совпадения. Рассмотрим несколько из них:
Как видно из названий, is() можно описать как оператор «равно», is(not()) как «неравно», а hasItem() — как проверку на наличие элемента в списке. И читается это как связное предложение. Здесь можно найти весь перечень матчеров.
Пока мы видели несложные примеры, на основании которых уже можно писать простые тесты. Но я бы хотел рассмотреть библиотеку Mockito, с чьей помощью наши тесты станут по-настоящему крутыми!
Как упоминалось выше, Mockito используется для создания «заглушек». Они называются mock-объектами. Их цель — заменить собой сложные объекты, которые не нужно/невозможно тестировать. Объявить их можно двумя способами:
Обратите внимание, что для того, чтобы использовать аннотацию @Mock , класс нужно пометить аннотацией @RunWith(MockitoJUnitRunner.class) или вызвать MockitoAnnotations.initMocks(this); в @Before -методе:
Получив «замоканный» объект, можно творить настоящие чудеса! К примеру, для того, чтобы «переопределить» название приложения из строкового ресурса, можно сделать следующее:
Теперь при вызове метода getString() будет возвращаться «Fake string», даже если он вызван неявно (за пределами теста):
Но что если мы хотим переопределить все строковые ресурсы? Неужели нам придется прописывать эту конструкцию для каждого из них? Естественно, нет. Для этого предусмотрены методы anyXXX() , (anyInt() , anyString() , etc. Теперь, если заменить R.string.app_name на anyInt() (не забываем, что в Android все ресурсы имеют тип Integer) — все строки будут заменены на нашу строку.
А убедиться в этом мы можем, дописав assertThat() в конце нашего теста:
В случае, когда мы хотим выбросить Exception, можно использовать конструкцию when(. ).thenThrow(. ); .
Есть еще магический метод verify() который провалит тест в случае, если указанный метод не был до этого вызван. Взглянем на код:
Работает это так: мы передаем в verify(mockedList) наш мок-лист, после чего указываем, какие именно методы нас интересуют. В данном случае добавление строки и очистка списка. Неотъемлемый инструмент, как по мне 🙂
Но по-настоящему потенциал этого метода раскрывается при использовании spy-объектов. Их главное отличие в том, что они не создаются напрямую, в отличие от mock’ов. А толку-то с них, спросите вы? А толк в том, что создав «шпиона» вы можете следить за ним также, как и за фейковым объектом:
Instrumented тесты в Android
При помощи этого типа тестов мы получаем доступ к реальному контексту, а также ко всем возможностям Android API. Помимо этого, у нас есть «режим Бога», при помощи которого мы можем управлять жизненным циклом активности. Для того, чтобы тест распознавался как инструментальный, нам нужно пометить класс соответствующей аннотацией:
Сами же тесты мы помечаем так же, как и в случае локальных — при помощи аннотации @Test . Давайте проверим, соответствует ли пакет нашего контекста нашему приложению:
С помощью имеющегося инструментария можно прослушивать состояние активностей:
. или и вовсе управлять их состоянием:
Заключение
Это, пожалуй, самые важные вещи, которые мне удалось найти при первом знакомстве. Поэтому не закидывайте камнями, как говорится 🙂 Но, я думаю, для начала этого будет достаточно. Для тех, кто хочет узнать больше о возможностях junit, рекомендую почитать официальную документацию, а вот материал про возможности инструментальных тестов.
Источник
Context в Android приложении
Что такое Context?
Как следует из названия, это контекст текущего состояния приложения или объекта. Это позволяет вновь созданным объектам понять, что вообще происходит. Обычно его вызывают, чтобы получить информацию о другой части программы.
Кроме того, Context является проводником в систему, он может предоставлять ресурсы, получать доступ к базам данных, преференсам и т.д. Ещё в Android приложениях есть Activity . Это похоже на проводник в среду, в которой выполняется ваше приложение. Объект Activity наследует объект Context . Он позволяет получить доступ к конкретным ресурсам и информации о среде приложения.
Context присутствует практически повсюду в Android приложении и является самой важной его частью, поэтому необходимо понимать, как правильно его использовать.
Неправильное использование Context может легко привести к утечкам памяти в Android приложении.
Существует много разных типов контекста, поэтому давайте разберёмся, что каждый из них представляет из себя, как и когда их правильно использовать.
Контекст приложения
Это singleton-экземпляр (единственный на всё приложение), и к нему можно получить доступ через функцию getApplicationContext() . Этот контекст привязан к жизненному циклу приложения. Контекст приложения может использоваться там, где вам нужен контекст, жизненный цикл которого не связан с текущим контекстом или когда вам нужно передать контекст за пределы Activity .
Например, если вам нужно создать singleton-объект для вашего приложения, и этому объекту нужен какой-нибудь контекст, всегда используйте контекст приложения.
Если вы передадите контекст Activity в этом случае, это приведет к утечке памяти, так как singleton-объект сохранит ссылку на Activity и она не будет уничтожена сборщиком мусора, когда это потребуется.
В случае, когда вам нужно инициализировать какую-либо библиотеку в Activity , всегда передавайте контекст приложения, а не контекст Activity .
Таким образом, getApplicationContext() нужно использовать тогда, когда известно, что вам нужен контекст для чего-то, что может жить дольше, чем любой другой контекст, который есть в вашем распоряжении.
Контекст Activity
Этот контекст доступен в Activity и привязан к её жизненному циклу. Контекст Activity следует использовать, когда вы передаете контекст в рамках Activity или вам нужен контекст, жизненный цикл которого привязан к текущему контексту.
getContext() в ContentProvider
Этот контекст является контекстом приложения и может использоваться аналогично контексту приложения. К нему можно получить доступ через метод getContext() .
Когда нельзя использовать getApplicationContext()?
Правило большого пальца
В большинстве случаев используйте контекст, доступный непосредственно из компонента, в котором вы работаете в данный момент. Вы можете безопасно хранить ссылку на него, если она не выходит за пределы жизненного цикла этого компонента. Как только вам нужно сохранить ссылку на контекст в объекте, который живет за пределами вашей Activity или другого компонента, даже временно, используйте ссылку на контекст приложения.
Источник
10 ноября 2016 г. Простые Unit-тесты в Android
Вот и настало время разобраться и написать небольшую заметку о том, что из себя представляет тестирование логики Android-приложений. К этому вопросу я пришел не сразу, однако учиться никогда не поздно!
Общие сведения
Для начала определимся, что такое тесты и зачем их нужно писать. Из Wikipedia:
Модульное тестирование, или юнит-тестирование (англ. unit testing) — процесс в программировании, позволяющий проверить на корректность отдельные модули исходного кода программы.
Идея состоит в том, чтобы писать тесты для каждой нетривиальной функции или метода. Это позволяет достаточно быстро проверить, не привело ли очередное изменение кода к регрессии, то есть к появлению ошибок в уже оттестированных местах программы, а также облегчает обнаружение и устранение таких ошибок.
Другими словами, тесты — это методы, которые проверяют работоспособность нашего кода. Но каким образом это делается? Давайте по порядку. Тест считается выполненным, если он выполнился без ошибок. А для разного рода проверок используются вспомогательные методы вроде «семейства» методов assertXXX (см. примеры ниже).
Unit-тестирование в Android можно разделить на 2 типа:
- Локальные unit-тесты (Local unit tests) — тесты, для выполнения которых используется только JVM. Они предназначены для тестирования бизнес-логики, которая не взаимодействует с операционной системой.
- Инструментальные unit-тесты (Instrumented unit tests) — тесты, с помощью которых тестируется логика, «завязанная» на Android API. Их выполнение происходит на физическом девайсе/эмуляторе, что занимает значительно больше времени, чем локальные тесты.
Выбор одного из этих 2 типов зависит от целей тестируемой логики. Естественно, если это возможно, лучше писать локальные тесты.
Также при создании тестов стоит уделить внимание организации пакетов. Существует следующая структура, которой стоит придерживаться:
- app/src/main/java — исходный код приложения;
- app/src/test/java — здесь размещаются локальные тесты;
- app/src/androidTest/java — сюда помещаем инструментальные тесты.
Настройка
Если вы почему-то не используете Android Studio, которая генерирует пакеты при создании проектов, стоит запомнить структуру выше. К тому же, IDE конфигурирует Gradle-файл модуля app:
Для упрощения написания тестов огромной популярностью пользуется фреймворк Mockito. В его возможности входит имитация и наблюдение объектов, а также вспомогательные средства проверок. Чтобы начать его использовать, добавим зависимость:
Local-тесты в Android
Теперь давайте рассмотрим 2 простейших теста, которые проверяют на соответствия 2 объекта (в нашем случае — числа):
Для этого создадим в пакете для локальных тестов класс и разместим в нем наши методы. Чтобы JUnit знал, что эти методы являются тестами, они помечаются соответствующей аннотацией @Test . Метод же assertEquals() кидает ошибку AssertionError в случае, если первый (ожидаемый) и второй (результат) не соответствуют друг другу.
Давайте запустим их (нажав правой кнопкой на класс и выбрав Run ‘ExampleUnitTest’ в появившемся меню) и посмотрим на результат выполнения:
Видно, что первый метод выполнился, а во втором произошла ошибка, т.к. 5 != (2 + 2). Также можно настроить тест на ожидаемое исключение используя параметр expected :
В таком случае тест выполнится, т.к. это исключение мы ожидали. Для длинных операций можно также указать параметр timeout и установить значение в миллисекундах. Если метод не выполнится в течение заданного времени, тест будет считаться проваленным:
Есть еще такой хитрый механизм как Matchers. К примеру, их на вход принимает метод assertThat(T actual, Matcher matcher) и возвращают методы класса org.hamcrest.CoreMatchers . Матчеры представляют собой логические операции совпадения. Рассмотрим несколько из них:
Как видно из названий, is() можно описать как оператор «равно», is(not()) как «неравно», а hasItem() — как проверку на наличие элемента в списке. И читается это как связное предложение. Здесь можно найти весь перечень матчеров.
Пока мы видели несложные примеры, на основании которых уже можно писать простые тесты. Но я бы хотел рассмотреть библиотеку Mockito, с чьей помощью наши тесты станут по-настоящему крутыми!
Как упоминалось выше, Mockito используется для создания «заглушек». Они называются mock-объектами. Их цель — заменить собой сложные объекты, которые не нужно/невозможно тестировать. Объявить их можно двумя способами:
Обратите внимание, что для того, чтобы использовать аннотацию @Mock , класс нужно пометить аннотацией @RunWith(MockitoJUnitRunner.class) или вызвать MockitoAnnotations.initMocks(this); в @Before -методе:
Получив «замоканный» объект, можно творить настоящие чудеса! К примеру, для того, чтобы «переопределить» название приложения из строкового ресурса, можно сделать следующее:
Теперь при вызове метода getString() будет возвращаться «Fake string», даже если он вызван неявно (за пределами теста):
Но что если мы хотим переопределить все строковые ресурсы? Неужели нам придется прописывать эту конструкцию для каждого из них? Естественно, нет. Для этого предусмотрены методы anyXXX() , (anyInt() , anyString() , etc. Теперь, если заменить R.string.app_name на anyInt() (не забываем, что в Android все ресурсы имеют тип Integer) — все строки будут заменены на нашу строку.
А убедиться в этом мы можем, дописав assertThat() в конце нашего теста:
В случае, когда мы хотим выбросить Exception, можно использовать конструкцию when(. ).thenThrow(. ); .
Есть еще магический метод verify() который провалит тест в случае, если указанный метод не был до этого вызван. Взглянем на код:
Работает это так: мы передаем в verify(mockedList) наш мок-лист, после чего указываем, какие именно методы нас интересуют. В данном случае добавление строки и очистка списка. Неотъемлемый инструмент, как по мне 🙂
Но по-настоящему потенциал этого метода раскрывается при использовании spy-объектов. Их главное отличие в том, что они не создаются напрямую, в отличие от mock’ов. А толку-то с них, спросите вы? А толк в том, что создав «шпиона» вы можете следить за ним также, как и за фейковым объектом:
Instrumented тесты в Android
При помощи этого типа тестов мы получаем доступ к реальному контексту, а также ко всем возможностям Android API. Помимо этого, у нас есть «режим Бога», при помощи которого мы можем управлять жизненным циклом активности. Для того, чтобы тест распознавался как инструментальный, нам нужно пометить класс соответствующей аннотацией:
Сами же тесты мы помечаем так же, как и в случае локальных — при помощи аннотации @Test . Давайте проверим, соответствует ли пакет нашего контекста нашему приложению:
С помощью имеющегося инструментария можно прослушивать состояние активностей:
. или и вовсе управлять их состоянием:
Заключение
Это, пожалуй, самые важные вещи, которые мне удалось найти при первом знакомстве. Поэтому не закидывайте камнями, как говорится 🙂 Но, я думаю, для начала этого будет достаточно. Для тех, кто хочет узнать больше о возможностях junit, рекомендую почитать официальную документацию, а вот материал про возможности инструментальных тестов.
Источник