- Tek Eye
- Load a Bitmap from Resources Correctly
- Bitmaps can be BIG but Android Screens can be Small
- Bitmap Subsampling to the Rescue
- Android Bitmap Loading Code from the Developer Site
- Code to Load an Android Bitmap from a Large Resource Image
- Using a Open Source Library to Manage Large Bitmap Loading
- See Also
- Archived Comments
- Do you have a question or comment about this article?
- Класс Bitmap
- Bitmap.Config
- Получить Bitmap из ImageView
- Изменение размеров — метод createScaledBitmap()
- Кадрирование — метод createBitmap()
- Меняем цвета каждого пикселя
- Конвертируем Bitmap в байтовый массив и обратно
- Сжимаем картинку
- Как раскодировать Bitmap из Base64
- Вычисляем средние значения цветов
- Дополнительные материалы
Tek Eye
When handling bitmaps Android developers can come across the error java.lang.OutOfMemoryError: bitmap size exceeds VM budget. This usually occurs when the bitmaps are large (several megabytes uncompressed), also when running the code on older devices, or trying to load lots of bitmaps. This occurs because Android was design for mobile devices, which may have limited hardware resources, including memory, and bitmaps can require large amounts of memory.
Load a Bitmap from Resources Correctly
Despite Android not dealing with multi-megabyte bitmap loading automatically, it can still be done. Instead of loading the whole bitmap a reduced resolution version is loaded (via a technique called subsampling). Android bitmap loading is achieved via the BitmapFactory class. The Options settings passed to the class can reduce the size of the bitmap, saving on memory usage.
(For this Android tutorial try the code in a simple app. This article assumes that the latest Android Studio is installed, a basic app can be created and run, here called Bitmap Loading, and the code in this article can be correctly copied into Android Studio. The example code can be changed to meet your own requirements. When entering code in Studio add import statements when prompted by pressing Alt-Enter. The code for the Bitmap Loading demo project used in this article is available for importing into Android Studio.)
Bitmaps can be BIG but Android Screens can be Small
A digital image from a camera on an Android voice can vary in size, between 5 and 18 megapixels (MP) is possible (and larger). This is the uncompressed size. The file storing the image, usually a JPEG file, is smaller than the displayed image because of compression. High end cameras can produce 20 MP or higher images. A 5 MP image can have a resolution of 2560×1920, that is greater than high definition (HD) television at 1920×1080, and bigger than the resolution of the Goggle Nexus 10 tablet device at 2560×1600. What about an 18 MP image? A massive 5184×3456. The Nexus 5 phone has a HD screen (1920×1080), so why load more than 2 MP of data if the screen can only display a maximum of 2 MP.
Bitmap Subsampling to the Rescue
Using a technique called subsampling the huge photo image being viewed on the Android device only consumes as much memory as required to display it, 2 MP for a HD resolution screen. This saves precious app memory and reduces the possibility of out of memory errors. Here’s an example of loading large bitmaps on different Android devices. A 1000×1000 placeholder image was loaded into an ImageView and the app run on two devices. One with 480×800 screen, and another with a 320×480 screen.
The one million pixel image is only using 230,400 pixels on the larger screen, and 102,400 pixels on the smaller screen. Therefore loading all one million pixels is not required. Loading only the required size for display makes sense.
Android Bitmap Loading Code from the Developer Site
There is an article on the Android Developers site called Loading Large Bitmaps Efficiently that discusses bitmap loading. When processing multiple large bitmaps it needs to be done away from the User Interface (UI) thread, for example using AsyncTask , and use caching when appropriate. The article links to a sample app, DisplayingBitmaps.zip. This same sample is available via Android Studio using the Import Sample option (via the File then New menu option. (In early releases of the Android SDK this example app was previously called Bitmap Fun from the BitmapFun.zip file.)
The basic steps in loading a large bitmap are:
- Determine the required size (from a known size or determining the size of the target View).
- Use the BitmapFactory class to get the bitmap’s size (set inJustDecodeBounds in BitmapFactory.Options to true).
- Using 1. and 2. calculate the subsampling value (a multiple of 2) and pass it to the BitmapFactory.Options setting inSampleSize.
- Use the BitmapFactory to load a reduced size bitmap.
The following example app code performs the steps listed above.
Code to Load an Android Bitmap from a Large Resource Image
A large bitmap is needed. You may be reading this because you have a very large bitmap causing out of memory errors. If not this example code is using a large image of a Turner painting. The image size is 5684×4223, a 24 MP image! You can grab the image from Wikimedia Commons, it is available in several sizes.
The large Turner image was added to the project in a folder called drawable-nodpi under the res folder. A large placeholder image (large enough to match the screen width) was also added to the folder. It can be generated from Placeholder Graphic at openclipart.org. The layout is just an ImageView with a Button below it:
Here’s the code for the bitmap loading app:
And here is the app code in action, loading a 24 MP image into a much smaller ImageView:
The code used in this tutorial is available in bitmap-loading.zip, ready for importing into Android Studio (select New from the File menu and then Import project). It is also available from the Android Studio example projects page, which has some additional details on importing projects into Android Studio.
Using a Open Source Library to Manage Large Bitmap Loading
This code is good for a single bitmap, however, caching and background loading is important for professional apps. One way of achieving this is to use an existing implementation, such as that provided in the Display Bitmaps sample, or existing libraries that support large bitmap loading with caching, including:
See Also
- The source code for the demo in this article is in bitmap-loading.zip.
- How to Get a View Size in Android.
- See the other Android Studio example projects to learn Android app programming.
- For a full list of the articles on Tek Eye see the full site Index
Archived Comments
Girish on November 5, 2014 at 11:11 am said:
This code also throws OUTOFMEMORYEXCEPTION.
Tek Eye on November 5, 2014 at 12.45 pm said:
Double check that the code has been copied correctly.
Erro on August 3, 2015 at 12:08 am said:
Exeption problem error too, this code don’t work any more.
Tek Eye on August 4, 2015 at 10.32 am said:
As per previous comment.
Author: Daniel S. Fowler Published: 2014-06-10 Updated: 2018-01-28
Do you have a question or comment about this article?
(Alternatively, use the email address at the bottom of the web page.)
↓markdown↓ CMS is fast and simple. Build websites quickly and publish easily. For beginner to expert.
Free Android Projects and Samples:
Источник
Класс Bitmap
Вам часто придётся иметь дело с изображениями котов, которые хранятся в файлах JPG, PNG, GIF. По сути, любое изображение, которое мы загружаем из графического файла, является набором цветных точек (пикселей). А информацию о каждой точке можно сохранить в битах. Отсюда и название — карта битов или по-буржуйски — bitmap. У нас иногда используется термин растр или растровое изображение. В Android есть специальный класс android.graphics.Bitmap для работы с подобными картинками.
Существуют готовые растровые изображения в файлах, о которых поговорим ниже. А чтобы создать с нуля объект Bitmap программным способом, нужно вызвать метод createBitmap():
В результате получится прямоугольник с заданными размерами в пикселях (первые два параметра). Третий параметр отвечает за информацию о прозрачности и качестве цвета (в конце статьи есть примеры).
Очень часто нужно знать размеры изображения. Чтобы узнать его ширину и высоту в пикселах, используйте соответствующие методы:
Bitmap.Config
Кроме размеров, желательно знать цветовую схему. У класса Bitmap есть метод getConfig(), который возвращает перечисление Bitmap.Config.
Всего существует несколько элементов перечисления.
- Bitmap.Config ALPHA_8 — каждый пиксель содержит в себе информацию только о прозрачности, о цвете здесь ничего нет. Каждый пиксель требует 8 бит (1 байт) памяти.
- Bitmap.Config ARGB_4444 — устаревшая конфигурация, начиная с API 13. Аналог ARGB_8888, только каждому ARGB-компоненту отведено не по 8, а по 4 бита. Соответственно пиксель весит 16 бит (2 байта). Рекомендуется использовать ARGB_8888
- Bitmap.Config ARGB_8888 — на каждый из 4-х ARGB-компонентов пикселя (альфа, красный, зеленый, голубой) выделяется по 8 бит (1 байт). Каждый пиксель занимает 4 байта. Обладает наивысшим качеством для картинки.
- Bitmap.Config RGB_565 — красному и и синему компоненту выделено по 5 бит (32 различных значений), а зелёному — шесть бит (64 возможных значений). Картинка с такой конфигурацией может иметь артефакты. Каждый пиксель будет занимать 16 бит или 2 байта. Конфигурация не хранит информацию о прозрачности. Можно использовать в тех случаях, когда рисунки не требуют прозрачности и высокого качества.
Конфигурация RGB_565 была очень популярна на старых устройствах. С увеличением памяти и мощности процессоров данная конфигурация теряет актуальность.
В большинстве случаев вы можете использовать ARGB_8888.
Получив объект в своё распоряжение, вы можете управлять каждой его точкой. Например, закрасить его синим цветом.
Чтобы закрасить отдельную точку, используйте метод setPixel() (парный ему метод getPixel позволит узнать информацию о точке). Закрасим красной точкой центр синего прямоугольника из предыдущего примера — имитация следа от лазерной указки. Котам понравится.
В нашем случае мы создали растровое изображение самостоятельно и можем на него воздействовать. Но если вы загрузите готовое изображение из файла и попытаетесь добавить к нему красную точку, то можете получить крах программы. Изображение может быть неизменяемым, что-то типа «Только для чтения», помните об этом.
Созданный нами цветной прямоугольник и управление отдельными точками не позволят вам нарисовать фигуру, не говоря уже о полноценном рисунке. Класс Bitmap не имеет своих методов для рисования, для этого есть метод Canvas (Холст), на котором вы можете размещать объекты Bitmap.
Когда вы размещали в разметке активности компонент ImageView и присваивали атрибуту android:src ресурс из папок drawable-xxx, то система автоматически выводила изображение на экран.
Если нужно программно получить доступ к битовой карте (изображению) из ресурса, то используется такой код:
Обратный процес конвертации из Bitmap в Drawable:
Изображение можно сохранить, например, на SD-карту в виде файла (кусок кода):
Каждая точка изображения представлена в виде 4-байтного целого числа. Сначала идёт байт прозрачности — значение 0 соответствует полной прозрачности, а 255 говорит о полной непрозрачности. Промежуточные значения позволяют делать полупрозрачные изображения. Этим искусством в совершенстве владел чеширский кот, который умело управлял всеми точками своего тела и растворялся в пространстве, только улыбка кота долго ещё висела в воздухе (что-то я отвлёкся).
Следующие три байта отвечают за красный, зелёный и синий цвет, которые работают по такому же принципу. Т.е. значение 255 соответствует насыщенному красному цвету и т.д.
Так как любое изображение кота — это набор точек, то с помощью метода getPixels() мы можем получить массив этих точек, сделать с этой точкой что-нибудь нехорошее (поменять прозрачность или цвет), а потом с помощью родственного метода setPixels() записать новые данные обратно в изображение. Так можно перекрасить чёрного кота в белого и наоборот. Если вам нужна конкретная точка на изображении, то используйте методы getPixel()/setPixel(). Подобный подход используется во многих графических фильтрах. Учтите, что операция по замене каждой точки в большом изображении занимает много времени. Желательно проводить подобные операции в отдельном потоке.
На этом базовая часть знакомства с битовой картой закончена. Теперь подробнее.
Учитывая ограниченные возможности памяти у мобильных устройств, следует быть осторожным при использовании объекта Bitmap во избежание утечки памяти. Не забывайте освобождать ресурсы при помощи метода recycle(), если вы в них не нуждаетесь. Например:
Почему это важно? Если не задумываться о ресурсах памяти, то можете получить ошибку OutOfMemoryError. На каждое приложение выделяется ограниченное количество памяти (heap size), разное в зависимости от устройства. Например, 16мб, 24мб и выше. Современные устройства как правило имеют 24мб и выше, однако это не так много, если ваше приложение злоупотребляет графическими файлами.
Bitmap на каждый пиксель тратит в общем случае 2 или 4 байта (зависит от битности изображения – 16 бит RGB_555 или 32 бита ARGB_888). Можно посчитать, сколько тратится ресурсов на Bitmap, содержащий изображение, снятое на 5-мегапиксельную камеру.
При соотношении сторон 4:3 получится изображение со сторонами 2583 х 1936. В конфигурации RGB_555 объект Bitmap займёт 2592 * 1936 * 2 = около 10Мб, а в ARGB_888 (режим по умолчанию) в 2 раза больше – чуть более 19Мб.
Во избежание проблем с памятью прибегают к помощи методов decodeXXX() класса BitmapFactory.
Если установить атрибут largeHeap в манифесте, то приложению будет выделен дополнительный блок памяти.
Ещё одна потенциальная проблема. У вас есть Bitmap и присвоили данный объект кому-то. Затем объект был удалён из памяти, а ссылка на него осталась. Получите крах приложения с ошибкой типа «Exception on Bitmap, throwIfRecycled».
Возможно, лучше сделать копию.
Получить Bitmap из ImageView
Если в ImageView имеется изображение, то получить Bitmap можно следующим образом:
Но с этим способом нужно быть осторожным. Например, если в ImageView используются элементы LayerDrawable, то возникнет ошибка. Можно попробовать такой вариант.
Более сложный вариант, но и более надёжный.
Изменение размеров — метод createScaledBitmap()
С помощью метода createScaledBitmap() можно изменить размер изображения.
Будем тренироваться на кошках. Добавим картинку в ресурсы (res/drawable). В разметку добавим два элемента ImageView
В последнем параметре у метода идёт булева переменная, отвечающая за сглаживание пикселей. Обычно его применяют, когда маленькое изображение увеличивают в размерах, чтобы улучшить качество картинки. При уменьшении, как правило, в этом нет такой необходимости.
Кадрирование — метод createBitmap()
Существует несколько перегруженных версий метода Bitmap.createBitmap(), с помощью которых можно скопировать участок изображения.
- сreateBitmap(Bitmap source, int x, int y, int width, int height, Matrix m, boolean filter) — Returns an immutable bitmap from subset of the source bitmap, transformed by the optional matrix.
- createBitmap(int width, int height, Bitmap.Config config) — Returns a mutable bitmap with the specified width and height.
- createBitmap(Bitmap source, int x, int y, int width, int height) — Returns an immutable bitmap from the specified subset of the source bitmap.
- createBitmap(int[] colors, int offset, int stride, int width, int height, Bitmap.Config config) — Returns a immutable bitmap with the specified width and height, with each pixel value set to the corresponding value in the colors array.
- createBitmap(Bitmap src) — Returns an immutable bitmap from the source bitmap.
- createBitmap(int[] colors, int width, int height, Bitmap.Config config) — Returns a immutable bitmap with the specified width and height, with each pixel value set to the corresponding value in the colors array.
Описываемый ниже код не является оптимальным и очень ресурсоёмкий. На больших изображениях код будет сильно тормозить. Приводится для ознакомления. Чтобы вывести часть картинки, можно сначала создать нужный Bitmap с заданными размерами, занести в массив каждый пиксель исходного изображения, а затем этот же массив вернуть обратно. Но, так как мы уже задали другие размеры, то часть пикселей не выведутся.
По аналогии мы можем вывести и нижнюю правую часть изображения:
Немного модифицировав код, мы можем кадрировать центр исходного изображения. Предварительно придётся проделать несколько несложных вычислений.
Скриншот приводить не буду, проверьте самостоятельно.
Меняем цвета каждого пикселя
Через метод getPixels() мы можем получить массив всех пикселей растра, а затем в цикле заменить определённым образом цвета в пикселе и получить перекрашенную картинку. Для примера возьмем стандартный значок приложения, поместим его в ImageView, извлечём информацию из значка при помощи метода decodeResource(), применим собственные методы замены цвета и полученный результат поместим в другие ImageView:
Код для класса активности:
На скриншоте представлен оригинальный значок и три варианта замены цветов.
Ещё один пример, где также в цикле меняем цвет каждого пикселя Green->Blue, Red->Green, Blue->Red (добавьте на экран два ImageView):
Конвертируем Bitmap в байтовый массив и обратно
Сжимаем картинку
В предыдущем примере вызывался метод compress(). Несколько слов о нём. В первом аргументе передаём формат изображения, поддерживаются форматы JPEG, PNG, WEBP. Во втором аргументе указываем степень сжатия от 0 до 100, 0 — для получения малого размера файла, 100 — максимальное качество. Формат PNG не поддерживает сжатие с потерей качества и будет игнорировать данное значение. В третьем аргументе указываем файловый поток.
Как раскодировать Bitmap из Base64
Если изображение передаётся в текстовом виде через Base64-строку, то воспользуйтесь методом, позволяющим получить картинку из этой строки:
Вычисляем средние значения цветов
Дополнительные материалы
На StackOverFlow есть интересный пример программной генерации цветных квадратов с первой буквой слова. В пример квадрат используется как значок к приложению. Также популярен этот приём в списках. Квадраты также заменять кружочками.
Источник