Android studio kotlin delay

Kotlin Coroutines — Thread.sleep() vs delay

Nov 19, 2018 · 3 min read

F rom the past few days, I have been trying to understand Coroutines and to be honest I have struggled a lot. For those who don’t know about Coroutines, in a nutshell, they are lightweight threads. I am not going to answer questions like what are Coroutines, why Coroutines etc. etc. since there are plenty of good articles related to that out there!. Rather I would be discussing something related to suspending functions.

One of the things I found difficult to wrap my head around are suspending functions. So what are they?

Kotlin has a suspend keyword which is its way of telling that this particular function is going to take some time for execution, maybe 10 seconds or even minutes who knows!. When such a function is called from a coroutine, instead of blocking until that function returns like a normal function call, it is suspended. What that means is that the Coroutine unblocks the thread that it’s running on while it waits for the result. During that time the thread is free to perform other task like executing another coroutine. As soon as the result is obtained, execution starts from where it was left.

Note : suspending functions can be called from another suspending functions or coroutines only. In case you try to call it from a normal function you will get an error.

Notice th e arrow on line 34 it’s the IDE telling us that this is where the suspending occurs. This is the suspending point. Since delay is a suspending function which is called from another function, the enclosing function also has the suspend keyword in its declaration.

Now that we know enough, let’s see the difference between delay and Thread.sleep() using a very simple example because

Simplicity is the glory of expression — Walt Whitman

Step 1: Add these dependencies to your build.gradle file

Step 2: Create a new activity and add this to your layout file

Step 3: Add this to your MainActivity

Step 4: Run the app, click the button and check your Logcat.

Output: You will notice that first “launched coroutine 1” is printed then after 5 seconds “Here after a delay of 5 seconds” and then finally “launched coroutine 2” is printed.

Step 5: Update your MainActivity with the following code

Step 6: Run the app, click the button and check your Logcat again.

Output: Now you will see that first “launched coroutine 1” is printed, after that “launched coroutine 2” and when 5 seconds are over “Here after a delay of 5 seconds”.

Conclusion

Since delay is a suspending function, call to delay results in non-blocking suspension thereby allowing the other Coroutine to execute. After 5 seconds when delay’s execution is finished we continue the execution of Coroutine from the point we left.

In the case of Thread.sleep() since it is a blocking call, the Coroutine is blocked for 5 seconds and only when it is done executing the other Coroutine gets a chance to run.

Voilà! This was indeed a short one, but hopefully, it gave you a better understanding of some basic concepts of Coroutines.

Источник

delay

Delays coroutine for a given time without blocking a thread and resumes it after a specified time.

This suspending function is cancellable. If the Job of the current coroutine is cancelled or completed while this suspending function is waiting, this function immediately resumes with CancellationException. There is a prompt cancellation guarantee. If the job was cancelled while this function was suspended, it will not resume successfully. See suspendCancellableCoroutine documentation for low-level details.

If you want to delay forever (until cancellation), consider using awaitCancellation instead.

Note that delay can be used in select invocation with onTimeout clause.

Implementation note: how exactly time is tracked is an implementation detail of CoroutineDispatcher in the context.

Parameters

time in milliseconds.

Delays coroutine for a given duration without blocking a thread and resumes it after the specified time.

This suspending function is cancellable. If the Job of the current coroutine is cancelled or completed while this suspending function is waiting, this function immediately resumes with CancellationException. There is a prompt cancellation guarantee. If the job was cancelled while this function was suspended, it will not resume successfully. See suspendCancellableCoroutine documentation for low-level details.

If you want to delay forever (until cancellation), consider using awaitCancellation instead.

Note that delay can be used in select invocation with onTimeout clause.

Implementation note: how exactly time is tracked is an implementation detail of CoroutineDispatcher in the context.

Источник

Как вызвать метод после задержки в Android

Я хочу иметь возможность вызывать следующий метод после указанной задержки. В цели c было что-то вроде:

Есть ли эквивалент этого метода в Android с Java? Например, мне нужно иметь возможность вызывать метод через 5 секунд.

Котлин

Я не мог использовать другие ответы в моем случае. Я использовал нативный таймер Java вместо этого.

Примечание. Этот ответ был дан, когда в вопросе не был указан Android в качестве контекста. Ответ на вопрос, касающийся темы пользовательского интерфейса Android, можно найти здесь.

Похоже, что API Mac OS позволяет текущему потоку продолжить и планирует выполнение задачи асинхронно. В Java эквивалентная функция предоставляется java.util.concurrent пакетом. Я не уверен, какие ограничения может наложить Android.

Для выполнения чего-либо в потоке пользовательского интерфейса через 5 секунд:

Вы можете использовать Handler внутри UIThread:

Читайте также:  Почему греется андроид смартфон

Спасибо за все отличные ответы, я нашел решение, которое наилучшим образом соответствует моим потребностям.

Kotlin И Java много способов

1. Использование Handler

2. Использование TimerTask

Или даже короче

Или самый короткий будет

3. Использование Executors

На яве

1. Использование Handler

2. Использование Timer

3. Использование ScheduledExecutorService

Смотрите это демо:

Если вам нужно использовать обработчик, но вы находитесь в другом потоке, вы можете использовать его runonuithread для запуска обработчика в потоке пользовательского интерфейса. Это избавит вас от исключений, брошенных с просьбой позвонить Looper.Prepare()

Выглядит довольно грязно, но это один из способов.

Я предпочитаю использовать View.postDelayed() метод, простой код ниже:

Вот мое самое короткое решение:

Если вы используете Android Studio 3.0 и выше, вы можете использовать лямбда-выражения. Метод callMyMethod() вызывается через 2 секунды:

Если вам нужно отменить отложенный запуск, используйте это:

Я предлагаю Таймер , он позволяет запланировать вызов метода на очень определенный интервал. Это не заблокирует ваш пользовательский интерфейс и не оставит ваше приложение отзывчивым во время выполнения метода.

Другой вариант — это wait (); метод, это заблокирует текущий поток на указанный промежуток времени. Это заставит ваш пользовательский интерфейс перестать отвечать, если вы сделаете это в потоке пользовательского интерфейса.

Для простой строки Handle Post delay вы можете сделать следующее:

надеюсь, это поможет

Вы можете использовать это для простейшего решения:

Еще, ниже может быть еще одно чистое полезное решение:

Вы можете сделать это намного чище, используя недавно введенные лямбда-выражения:

Так что здесь есть несколько вещей, которые нужно учитывать, так как есть много способов снять шкуру с этой кошки. Хотя ответы уже все были выбраны и выбраны. Я думаю, что важно, чтобы это было пересмотрено с надлежащими руководящими принципами кодирования, чтобы никто не шел в неправильном направлении только из-за «простого ответа большинства».

Итак, сначала давайте обсудим простой ответ с задержкой после публикации, который является ответом, выбранным победителем в целом в этой теме.

Несколько вещей для рассмотрения. После задержки вы можете столкнуться с утечками памяти, мертвыми объектами, ушедшими жизненными циклами и многим другим. Поэтому правильное обращение с ним также важно. Вы можете сделать это несколькими способами.

Ради современного развития я поставлю в КОТЛИН

Вот простой пример использования потока пользовательского интерфейса при обратном вызове и подтверждение того, что ваша активность все еще жива, когда вы нажимаете на обратный вызов.

Тем не менее, это все еще не идеально, поскольку нет никаких причин, чтобы ответить на ваш обратный вызов, если активность ушла. так что лучшим способом было бы сохранить ссылку на него и удалить его обратные вызовы, как это.

и, конечно же, очистка onPause, чтобы он не попадал в обратный вызов.

Теперь, когда мы обсудили очевидное, давайте поговорим о более чистом варианте с современными сопрограммами и котлином :). Если вы еще не используете их, вы действительно пропустите.

или если вы хотите всегда запускать пользовательский интерфейс для этого метода, вы можете просто сделать:

Конечно, точно так же, как PostDelayed, вы должны убедиться, что обрабатываете отмену, чтобы вы могли либо выполнять проверки активности после задержки вызова, либо вы можете отменить ее в onPause, как и другой маршрут.

Если вы поместите запуск (UI) в сигнатуру метода, задание может быть назначено в вызывающей строке кода.

Таким образом, мораль этой истории заключается в том, чтобы быть в безопасности с вашими отложенными действиями, убедитесь, что вы удалили свои обратные вызовы, или отменили свою работу, и, конечно, подтвердите, что у вас есть правильный жизненный цикл, чтобы коснуться элементов в вашем обратном обратном вызове. Coroutines также предлагает отменяемые действия.

Также стоит отметить, что вы обычно должны обрабатывать различные исключения, которые могут возникнуть с сопрограммами. Например, отмена, исключение, тайм-аут, все, что вы решите использовать. Вот более сложный пример, если вы решите действительно использовать сопрограммы.

Источник

Современная Android разработка на Kotlin. Часть 1

Данная статья является перевом статьи от Mladen Rakonjac

Очень сложно найти один проект, который охватывал бы всё новое в разработке под Android в Android Studio 3.0, поэтому я решил написать его. В этой статье мы разберём следующее:

  1. Android Studio 3
  2. Язык программирования Kotlin
  3. Варианты сборки
  4. ConstraintLayout
  5. Библиотека привязки данных Data Binding
  6. Архитектура MVVM + паттерн repository (с mapper’ами) + Android Manager Wrappers
  7. RxJava2 и как это помогает нам в архитектуре
  8. Dagger 2.11, что такое внедрение зависимости, почему вы должны использовать это.
  9. Retrofit (Rx Java2)
  10. Room (Rx Java2)

Каким будет наше приложение?

Наше приложение будет самым простым, которое охватывает все перечисленные выше вещи: у него будет только одна функция, которая извлекает все репозитории пользователя googlesamples из GitHub, сохраняет эти данные в локальной базе данных и показывает их пользователю.

Я попытаюсь объяснить как можно больше строк кода. Вы всегда можете посмотреть код, который я опубликовал на GitHub.

Android Studio

Чтобы установить Android Studio 3, перейдите на эту страницу

Android Studio 3 поддерживает Kotlin. Откройте Create Android Project. Там вы увидите новый флажок с меткой Include Kotlin support. Он выбран по умолчанию. Дважды нажмите кнопку Далее и выберите Empty Activity, затем нажмите Finish.

Поздравляю! Вы сделали первое приложение для Android на Котлине 🙂

Kotlin

Вы можете видеть MainActivity.kt:

Расширение .kt означает, что файл является файлом Kotlin.

MainActivity: AppCompatActivity() означает, что мы расширяем AppCompatActivity.

Кроме того, все методы должны иметь ключевое слово fun и в Котлине вам не нужно использовать ;, но вы можете, если хотите. Вы должны использовать ключевое слово override, а не аннотацию, как в Java.

Так что же означает ? в savedInstanceState: Bundle?? Это означает, что savedInstanceState может быть типа Bundle или типа null. Kotlin null безопасный язык. Если у вас есть:

вы получите ошибку компиляции, потому что a должна быть инициализированна и это не может быть null. Это означает, что вы должны написать:

Кроме того, вы получите ошибку компиляции, если вы это сделаете:

Чтобы сделать a nullable, вы должны написать:

Почему эта важная особенность языка Котлина? Это помогает нам избежать NPE. Разработчики Android уже устали от NPE. Даже создатель null, сэр Тони Хоар, извинился за изобретение. Предположим, что мы имеем nullable nameTextView. Если переменная равна null, то в следующем коде мы получим NPE:

Читайте также:  Dolphin emulator android не устанавливается

Но Котлин, на самом деле, хорош, он не позволят нам делать даже такое. Он заставляет нас использовать оператор ? или оператор !!. Если мы используем оператор ?:

Строка будет исполнена только если nameTextView не null. В ином случае, если вы используете оператор !!:

Мы получим NPE если nameTextView null. Это для авантюристов :).
Это было небольшое введение в Kotlin. Когда мы продолжим, я остановлюсь, чтобы описать другой специфический код на Котлине.

2. Build Variants

В разработке часто вы имеете различные окружения. Наиболее стандартным является тестовое и производственное окружение. Эти среды могут отличаться в URL-адресах сервера, иконке, имени, целевом API и т.д. На fleka в каждом проекте у вас есть:

  • finalProduction, который отправляется в Google Play Store.
  • demoProduction, то есть версия с URL-адресом production сервера с новыми функциями, которые всё ещё не находятся в Google Play Store. Наши клиенты могут установить эту версию рядом с Google Play, чтобы они могли протестировать ее и дать нам обратную связь.
  • demoTesting, то же самое, что и demoProduction с тестовым URL-адресом сервера.
  • mock, полезен для меня как для разработчика и дизайнера. Иногда у нас есть готовый дизайн, и наш API ещё не готов. Ожидание API, чтобы быть начать разработку — не решение. Этот вариант сборки снабжён поддельными данными, поэтому команда дизайнеров может проверить его и дать нам обратную связь. Очень полезно это не откладывать. Когда API уже готов, мы перемещаем нашу разработку в окружение demoTesting.

В этом приложении мы будем использовать всех их. У них будут отличаться applicationId и имена. В gradle 3.0.0 есть новый API flavorDimension, который позволяет смешивать разновидности продукта, так, например, вы можете смешать разновидности demo и minApi23. В нашем приложении мы будем использовать только «default» flavorDimension. Перейдите в build.gradle для приложения и вставьте этот код внутри android <>

Перейдите в strings.xml и удалите строку app_name, чтобы у нас не было конфликтов. Затем нажмите Sync Now. Если вы перейдете в Build Variants, расположенным слева от экрана, вы увидите 4 варианта сборки, каждый из которых имеет два типа сборки: Debug и Release. Перейдите к варианту сборки demoProduction и запустите его. Затем переключитесь на другой и запустите его. Вы должны увидеть два приложения с разными именами.

3. ConstraintLayout

Если вы откроете activity_main.xml, вы увидите, что этот layout — ConstrainLayout. Если вы когда-либо писали приложение под iOS, вы знаете об AutoLayout. ConstraintLayout действительно похож на него. Они даже используют один и тот же алгоритм Cassowary.

Constraint помогает нам описать связи между View. Для каждого View у вас должно быть 4 Constraint, один для каждой стороны. В данном случае наш View ограничен родителем с каждой стороны.

Если вы передвинете TextView «Hello World» немного вверх во вкладке Design, во вкладке Text появится новая линия:

Вкладки Design и Text синхронизируются. Наши изменения во вкладке Design влияют на xml во вкладке Text и наоборот. Vertical_bias описывает вертикальную тенденцию view его Constraint. Если вы хотите центровать вертикально, используйте:

Давайте сделаем чтобы наш Activity показал только один репозиторий. В нём будут имя репозитория, количество звезд, владелец, и он будет показывать, есть ли у репозитория issues, или нет.

Чтобы получить такой layout, xml должен выглядеть так:

Пусть tools:text вас не смущает. Он просто помогает нам видеть хороший предварительный просмотр макета (layout’а).

Вы можете заметить, что наш макет плоский, ровный. Вложенных макетов нет. Вы должны использовать вложенные макеты как можно реже, поскольку это может повлиять на производительность. Более подробную информацию об этом вы можете найти здесь. Кроме того, ConstraintLayout отлично работает с разными размерами экрана:

и мне кажется, что я могу добиться желаемого результата очень быстро.
Это было небольшое введение в ConstraintLayout. Вы можете найти Google code lab здесь, и документацию о ConstraintLayout на GitHub.

4. Библиотека привязки данных Data Binding

Когда я услышал о библиотеке привязки данных, первое вопрос, который я задал себе: «ButterKnife работает очень хорошо для меня. Кроме того, я использую плагин, который помогает мне получать View из xml. Зачем мне это менять?». Как только я узнал больше о привязке данных, у меня было такое же чувство, какое у меня было, когда я впервые использовал ButterKnife.

Как ButterKnife помогает нам?

ButterKnife помогает нам избавиться от скучного findViewById. Итак, если у вас 5 View, без Butterknife у вас есть 5 + 5 строк, чтобы привязать ваши View. С ButterKnife у вас есть 5 строк. Вот и всё.

Что плохо в ButterKnife?

ButterKnife по-прежнему не решает проблему поддержки кода. Когда я использовал ButterKnife, я часто получал исключение во время выполнения, потому что я удалял View в xml, и не удалял код привязки в классе Activity / Fragment. Кроме того, если вы хотите добавить View в xml, вам нужно снова сделать привязку. Это очень скучно. Вы теряете время на поддерживание связей.

Что насчёт библиотеки привязки данных?

Есть много преимуществ! С помощью библиотеки привязки данных вы можете привязать свои View всего одной строкой кода! Позвольте мне показать вам, как это работает. Давайте добавим библиотеку Data Binding в наш проект:

Обратите внимание, что версия компилятора Data Binding должна совпадать с версией gradle в файле build.gradle проекта:

Нажмите Sync Now. Перейдите в activity_main.xml и оберните ConstraintLayout тегом layout:

Обратите внимание, что вам нужно переместить все xmlns в тег layout. Затем нажмите иконку Build или используйте сочетание клавиш Ctrl + F9 (Cmd + F9 на Mac). Нам нужно собрать проект, чтобы библиотека Data Binding могла сгенерировать класс ActivityMainBinding, который мы будем использовать в нашем классе MainActivity.

Если вы не выполните сборку проекта, вы не увидите класс ActivityMainBinding, потому что он генерируется во время компиляции. Мы все еще не закончили связывание, мы просто сказали, что у нас есть ненулевая переменная типа ActivityMainBinding. Кроме того, как вы можете заметить, я не указал ? в конце типа ActivityMainBinding, и я не инициализировал его. Как это возможно? Модификатор lateinit позволяет нам иметь ненулевые переменные, ожидающие инициализации. Подобно ButterKnife, инициализация привязки должна выполняться в методе onCreate, когда ваш Activity будет готов. Кроме того, вы не должны объявлять привязку в методе onCreate, потому что вы, вероятно, используете его вне области видимости метода onCreate. Наша привязка не должна быть нулевой, поэтому мы используем lateinit. Используя модификатор lateinit, нам не нужно проверять привязку переменной каждый раз, когда мы обращаемся к ней.

Читайте также:  Galaxy core prime android

Давайте инициализируем нашу переменную binding. Вы должны заменить:

Вот и всё! Вы успешно привязали свои View. Теперь вы можете получить к ним доступ и применить изменения. Например, давайте изменим имя репозитория на «Modern Android Habrahabr Article»:

Как вы можете видеть, мы можем получить доступ ко всем View (у которых есть id, конечно) из activity_main.xml через переменную binding. Вот почему Data Binding лучше, чем ButterKnife.

Getter’ы и Setter’ы в Котлине

Возможно, вы уже заметили, что у нас нет метода .setText (), как в Java. Я хотел бы остановиться здесь, чтобы объяснить, как геттеры и сеттеры работают в Kotlin по сравнению с Java.

Во-первых, вы должны знать, почему мы используем сеттеры и геттеры. Мы используем их, чтобы скрыть переменные класса и разрешить доступ только с помощью методов, чтобы мы могли скрыть элементы класса от клиентов класса и запретить тем же клиентам напрямую изменять наш класс. Предположим, что у нас есть класс Square в Java:

Используя метод setA (), мы запрещаем клиентам класса устанавливать отрицательное значение стороне квадрата, оно не должно быть отрицательным. Используя этот подход, мы должны сделать a приватным, поэтому его нельзя установить напрямую. Это также означает, что клиент нашего класса не может получить a напрямую, поэтому мы должны предоставить getter. Этот getter возвращает a. Если у вас есть 10 переменных с аналогичными требованиями, вам необходимо предоставить 10 геттеров. Написание таких строк — это скучная вещь, в которой мы обычно не используем наш разум.

Kotlin облегчает жизнь нашего разработчика. Если вы вызываете

это не означает, что вы получаете доступ к a непосредственно. Это то же самое, что

в Java. Причина заключается в том, что Kotlin автоматически генерирует геттеры и сеттеры по умолчанию. В Котлине, вы должны указать специальный сеттер или геттер, только если он у вас есть. В противном случае, Kotlin автогенерирует его для вас:

field? Что это? Чтобы было ясно, давайте посмотрим на этот код:

Это означает, что вы вызываете метод set внутри метода set, потому что нет прямого доступа к свойству в мире Kotlin. Это создаст бесконечную рекурсию. Когда вы вызываете a = что-то, он автоматически вызывает метод set.
Надеюсь, теперь понятно, почему вы должны использовать ключевое слово field и как работают сеттеры и геттеры.

Вернемся к нашему коду. Я хотел бы показать вам ещё одну замечательную особенность языка Kotlin, apply:

apply позволяет вам вызывать несколько методов на одном экземпляре.

Мы все еще не закончили привязку данных, есть ещё много дел. Давайте создадим класс модели пользовательского интерфейса для репозитория (этот класс модели пользовательского интерфейса для репозитория GitHub хранит данные, которые должны отображаться, не путайте их с паттерном Repository). Чтобы сделать класс Kotlin, вы должны перейти в New -> Kotlin File / Class:

В Kotlin первичный конструктор является частью заголовка класса. Если вы не хотите предоставлять второй конструктор, это всё! Ваша работа по созданию класса завершена здесь. Нет параметров конструктора для назначений полей, нет геттеров и сеттеров. Целый класс в одной строке!

Вернитесь в класс MainActivity.kt и создайте экземпляр класса Repository:

Как вы можете заметить, для построения объекта не нужно ключевого слова new.

Теперь перейдем к activity_main.xml и добавим тег data:

Мы можем получить доступ к переменной repository, которая является типом Repository в нашем макете. Например, мы можем сделать следующее в TextView с идентификатором repository_name:

В TextView repository_name будет отображаться текст, полученный из свойства repositoryName переменной repository. Остается только связать переменную репозитория от xml до repository из MainActivity.kt.
Нажмите Build, чтобы сгенерировать библиотеку привязки данных для создания необходимых классов, вернитесь в MainActivity и добавить две строки:

Если вы запустите приложение, вы увидите, что в TextView появится «Habrahabr Android Repository Article». Хорошая функция, да? 🙂

Но что произойдёт, если мы сделаем следующее:

Отобразится ли новый текст через 2 секунды? Нет, не отобразится. Вы должны заново установить значение repository. Что-то вроде этого будет работать:

Но это скучно, если нужно будет делать это каждый раз, когда мы меняем какое-то свойство. Существует лучшее решение, называемое Property Observer.
Давайте сначала опишем, что такое паттерн Observer, нам понадобится это в разделе rxJava:

Возможно, вы уже слышали об androidweekly.net. Это еженедельный информационный бюллетень об Android разработке. Если вы хотите его получить, вам необходимо подписаться на него, указав свой адрес электронной почты. Позже, если вы захотите, вы можете остановить отказаться от подписки на своем сайте.

Это один из примеров паттерна Observer / Observable. В данном случае, Android Weekly — наблюдаемый (Observable), он выпускает информационные бюллетени каждую неделю. Читатели — это наблюдатели (Observers), они подписываются на него, ждут новых выпусков, и, как только они получают её, они читают её, и если некоторые из них решат, что им это не нравится, он / она может прекратить следить.

Property Observer, в нашем случае, представляет собой XML-макет, который будет прослушивать изменения в экземпляре Repository. Таким образом, Repository является наблюдаемым. Например, как только свойство name класса Repository изменяется в экземпляре класса, xml должен обновится без вызова:

Как сделать это с помощью библиотеки привязки данных? Библиотека привязки данных предоставляет нам класс BaseObservable, который должен быть реализован в классе Repository:

BR — это класс, который автоматически генерируется один раз, когда используется аннотация Bindable. Как вы можете видеть, как только новое значение установлено, мы узнаём об этом. Теперь вы можете запустить приложение, и вы увидите, что имя репозитория будет изменено через 2 секунды без повторного вызова функции executePendingBindings ().

Для этой части это всё. В следующей части я напишу о паттерне MVVM, паттерне Repository и об Android Wrapper Managers. Вы можете найти весь код здесь. Эта статья охватывает код до этого коммита.

Источник

Оцените статью