Android uids and gids

Русские Блоги

Android-UID обучения, GID, GIDS и PID в системе Android

UID, GID, GIDS и PID в системе Android

вAndroidВ верхней части пользовательский UID указывает приложение. Когда приложение установлено, пользовательский UID назначается. В течение времени жизни приложения на устройстве пользовательский UID остается неизменным. Для обычных приложений GID равен UID.

GIDS генерируется платформой в процессе установки приложения и связана с конкретными разрешениями, применяемыми приложением. Если соответствующее разрешение, примененное в Приложении, предоставлено, и существует соответствующий GIDS, то gids этого Приложения будет содержать эти gids. Помните, что разрешения (GIDS) предназначены для разрешения или ограничения доступа приложений (не пользователей) к ресурсам устройства.

Android использует концепцию «песочницы» для достижения разделения и разрешений между приложениями, чтобы разрешить или запретить приложению доступ к ресурсам устройства, таким как файлы и каталоги, сети, датчики и API. Для этого Android использует некоторые утилиты Linux (такие как безопасность на уровне процесса, идентификаторы пользователей и групп, связанные с приложением, а также разрешения) для реализации операций, которые разрешено выполнять приложению.

Рисунок 1. Два Android-приложения, каждое в своей базовой песочнице или процессе

Приложения Android работают на собственных процессах Linux и им присваивается уникальный идентификатор пользователя. По умолчанию приложениям, работающим в базовом процессе изолированной программной среды, не назначаются разрешения, поэтому такие приложения имеют ограниченный доступ к системе или ресурсам, а приложения Android могут запрашивать разрешения только через файл манифеста приложения.

Различные приложения могут работать в одном процессе. Для этого метода вы должны сначала подписать эти приложения одним и тем же закрытым ключом, а затем использовать файл манифеста, чтобы назначить им один и тот же идентификатор пользователя Linux. Это делается путем определения атрибута манифеста android: sharedUserId с тем же значением / именем для общего доступа Доступ к его данным и коду, как показано на рисунке 2

Рисунок 2. Два приложения Android, запущенные в одном процессе

подводить итоги

В Android приложение имеет только один UID, и, конечно, несколько приложений могут также использовать UID.

Для обычных приложений gid равен uid. Поскольку uid и gid каждого приложения различны, как собственный уровень, так и уровень java могут защищать личные данные.

GIDS эквивалентен набору разрешений, UID может быть связан с GIDS, указывая, что UID имеет несколько разрешений

Процесс — это песочница хост-приложения, которое обычно имеет UID и несколько GIDS. Каждый процесс может получать доступ только к файлам в пределах диапазона разрешений UID и интерфейсов, разрешенных GID, которые составляют основную основу безопасности Android.

Источник

Как работает Android, часть 2

В этой статье я расскажу о некоторых идеях, на которых построены высокоуровневые части Android, о нескольких его предшественниках и о базовых механизмах обеспечения безопасности.

Говоря про Unix- и Linux-корни Android, нужно вспомнить и о других проектах операционных систем, влияние которых можно проследить в Android, хотя они и не являются его прямыми предками.

Я уже упомянул про BeOS, в наследство от которой Android достался Binder.

Plan 9 from Bell Labs

Plan 9 — потомок Unix, логическое продолжение, развитие его идей и доведение их до совершенства. Plan 9 был разработан в Bell Labs той же командой, которая создала Unix и C — над ним работали такие люди, как Ken Thompson, Rob Pike, Dennis Ritchie, Brian Kernighan, Tom Duff, Doug McIlroy, Bjarne Stroustrup, Bruce Ellis и другие.

В Plan 9 взаимодействие процессов между собой и с ядром системы реализовано не через многочисленные системные вызовы и механизмы IPC, а через виртуальные текстовые файлы и файловые системы (развитие принципа Unix «всё — это файл»). При этом каждая группа процессов «видит» файловую систему по-своему (пространства имён, namespaces), что позволяет запускать разные части системы в разном окружении.

Например, чтобы получить позицию курсора мыши, приложения читают текстовый файл /dev/mouse . Оконная система rio предоставляет каждому приложению свою версию этого файла, в которой видны только события, относящиеся к окну этого приложения, и используются локальные по отношению к окну координаты. Сама rio читает события «настоящей» мыши через такой же файл /dev/mouse — в том виде, в котором его видит она. Если она запущена напрямую, этот файл предоставляется ядром и действительно описывает движения настоящей мыши, но она может быть совершенно прозрачно запущена в качестве приложения под другой копией rio, без какой-то специальной поддержки с её стороны.

Plan 9 полностью поддерживает доступ к удалённым файловым системам (используется собственный протокол 9P, кроме того, поддерживаются FTP и SFTP), что позволяет программам совершенно прозрачно получать доступ к удалённым файлам, интерфейсам и ресурсам. Такая «родная» сетевая прозрачность превращает Plan 9 в распределённую операционную систему — пользователь может физически находиться за одним компьютером, на котором запущена rio, запускать приложения на нескольких других, использовать в них файлы, хранящиеся на файловом сервере и выполнять вычисления на CPU-сервере — всё это полностью прозрачно и без специальной поддержки со стороны каждой из частей системы.

Читайте также:  Чистка вирусов для андроид

За счёт красиво спроектированной архитектуры Plan 9 значительно проще и меньше, чем Unix — на самом деле ядро Plan 9 даже в несколько раз меньше известного микроядра Mach.

Perfection is achieved not when there is nothing more to add, but when there is nothing left to take away.

Несмотря на техническое превосходство и наличие слоя совместимости с Unix, Plan 9 не получил широкого распространения. Тем не менее, многие идеи и технологии из Plan 9 получили распространение и были реализованы в других системах. Самая известная из них — кодировка , которая была разработана в Plan 9 для обеспечения полной поддержки Unicode при сохранении обратной совместимости с ASCII — стала общепринятым стандартом.

Больше всего идей и технологий из Plan 9 реализовано в Linux:

  • файловая система /proc (procfs)
  • системный вызов clone (аналог rfork из Plan 9)
  • поддержка пространств имён монтирования (mount namespaces)
  • поддержка файловых систем, реализованных в пользовательском пространстве (filesystem in userspace, FUSE)
  • поддержка протокола 9P

Многое из этого используется, в том числе, и в Android. Кроме того, в Android реализован механизм intent’ов, похожий на plumber из Plan 9; о нём я расскажу в следующей статье.

Про Plan 9 можно узнать подробнее на сайте plan9.bell-labs.com (сохранённая копия в Wayback Machine), или его зеркале 9p.io

Inferno

Plan 9 получил продолжение в виде проекта Inferno, тоже разработанного в Bell Labs. К таким свойствам Plan 9, как простота и распределённость, Inferno добавляет переносимость. Программы для Inferno пишутся на высокоуровневом языке Limbo и выполняются — с использованием just-in-time компиляции — встроенной в ядро Inferno виртуальной машиной.

Inferno настолько переносим, что может запускаться

  • на процессорах разных архитектур: ARM, x86, IBM PowerPC, Sun SPARC, 6SGI MIPS и HP ,
  • как самостоятельная операционная система или как программа под Plan 9, Unix, Windows 95 и Windows NT.

При этом приложениям, запущенным внутри Inferno, предоставляется совершенно одинаковое окружение.

Inferno получил ещё меньше распространения и известности, чем Plan 9. С другой стороны, Inferno во многом предвосхитил Android, самую популярную операционную систему на свете.

Danger

Компания Danger Research Inc. была сооснована Энди Рубином (Andy Rubin) в 1999 году, за 4 года до сооснования им же Android Inc. в 2004 году.

В 2002 году Danger выпустили свой смартфон Danger Hiptop. Многие из разработчиков Danger впоследствии работали над Android, поэтому неудивительно, что его операционная система была во многом похожа на Android. Например, в ней были реализованы:

  • «всегда запущенные» приложения, написанные на Java,
  • полноценный веб-браузер,
  • веб-приложения,
  • мессенджер,
  • email client,
  • облачная синхронизация,
  • магазин сторонних приложений.

Подробнее о Danger можно прочитать в статье Chris DeSalvo, одного из разработчиков, под названием The future that everyone forgot.

Хотя использование высокоуровневых языков для серьёзной разработки сейчас уже никого не удивляет, из популярных операционных систем только у Android «родной» язык — высокоуровневая Java (с другой стороны, здесь можно вспомнить веб с его JavaScript, .NET для Windows и относительно высокоуровневый — но полностью компилируемый в нативный код и не использующий сборку мусора — Swift).

Несмотря на кажущиеся недостатки («Java сочетает в себе красоту синтаксиса C++ со скоростью выполнения питона»), Java обладает множеством преимуществ.

Во-первых, Java — самый популярный (с большим отрывом) язык программирования. У Java огромная экосистема библиотек и инструментов разработки (в том числе систем сборки и IDE). Про Java написано множество статей, книг и документации. Наконец, существует множество квалифицированных Java-разработчиков.

Программы на Java, как и на многих других высокоуровневых языках, переносимы между операционными системами и архитектурами процессора («Write once, run anywhere»). Практически это проявляется, например, в том, что приложения для Android работают без перекомпиляции на устройствах любой архитектуры (Android поддерживает ARM, ARM64, x86, x86–64 и MIPS).

В отличие от низкоуровневых языков вроде C и C++, использующих ручное управление памятью, в Java память автоматически управляется средой времени выполнения (runtime environment). Программа на Java даже не имеет прямого доступа к памяти, что автоматически предотвращает несколько классов ошибок, часто приводящих к падениям и уязвимостям в программах, написанных на низкоуровневых языках — невозможны «висячие ссылки» (из-за которых происходит ), разыменование нулевого указателя (при попытке это сделать выбрасывается NullPointerException ), чтение неинициализированной памяти и выход за границы массива.

Читайте также:  Андроид gang town story

Использование полноценной сборки мусора (по сравнению с automatic reference counting) избавляет программиста от всех проблем и сложностей с циклическими ссылками и позволяет реализовывать ещё более продвинутые (advanced) зависимости между объектами.

Это делает разработку под Android более приятной, чем разработку с использованием низкоуровневых языков, а приложения под Android гораздо более надёжными, в том числе и точки зрения безопасности.

Running Java is ART

В отличие от большинства других высокоуровневых языков, программы на Java не распространяются в виде исходного кода, а компилируются в промежуточный формат (байткод, bytecode), который представляет собой исполняемый бинарный код для специального процессора.

Хотя делаются попытки создать физический процессор, который исполнял бы Java-байткод напрямую, в подавляющем большинстве случаев в качестве такого процессора используется эмулятор — Java virtual machine (JVM). Обычно используется реализация от Oracle/OpenJDK под названием HotSpot.

В Android используется собственная реализация под названием Android Runtime (ART), специально оптимизированная для работы на мобильных устройствах. В старых версиях Android (до 5.0 Lollipop) вместо ART использовалась другая реализация под названием Dalvik.

И в Dalvik, и в ART используется собственный формат байткода и собственный формат файлов, в которых хранится байткод — DEX (Dalvik executable). В отличие от в «обычной джаве», весь Java-код приложения обычно компилируется в один classes.dex . При сборке Android-приложения Java-код сначала компилируется обычным компилятором Java в , а потом конвертируется в специальной утилитой (возможно и обратное преобразование).

И HotSpot, и Dalvik, и ART дополнительно оптимизируют выполняемый код. Все три используют just-in-time compilation (JIT), то есть во время выполнения компилируют байткод в куски полностью нативного кода, который выполняется напрямую. Кроме очевидного выигрыша в скорости, это позволяет оптимизировать код для выполнения на конкретном процессоре, не отказываясь от полной переносимости байткода.

Кроме того, ART может компилировать байткод в нативный код заранее, а не во время выполнения (ahead-of-time compilation) — причём система автоматически планирует эту компиляцию на то время, когда устройство не используется и подключено к зарядке (например, ночью). При этом ART учитывает данные, собранные профилировщиком во время предыдущих запусков этого кода (profile-guided optimization). Такой подход позволяет дополнительно оптимизировать код под специфику работы конкретного приложения и даже под особенности использования этого приложения именно этим пользователем.

В результате всех этих оптимизаций производительность Java-кода на Android не сильно уступает производительности низкоуровневого кода (на C/C++), а в некоторых случаях и превосходит её.

Java-байткод, в отличие от обычного исполняемого кода, использует объектную модель Java — то есть в байткоде явно записываются такие вещи, как классы, методы и сигнатуры. Это делает возможной компиляцию других языков в Java-байткод, что позволяет написанным на них программам исполняться на виртуальной машине Java и быть в той или иной степени совместимыми (interoperable) с Java.

Существуют как JVM-реализации независимых языков — например, Jython для Python, JRuby для Ruby, Rhino для JavaScript и диалект Lisp Clojure — так и языки, исходно разработанные для компиляции в Java-байткод и выполнения на JVM, самые известные из которых — Groovy, Scala и Kotlin.

Самый новый из них, Kotlin, специально разработанный для идеальной совместимости с Java и обладающий гораздо более приятным синтаксисом (похожим на Swift), поддерживается Google как официальный язык разработки под Android наравне с Java.

Несмотря на все преимущества Java, в некоторых случаях всё-таки желательно использовать низкоуровневый язык — например, для реализации критичного по производительности компонента, такого как браузерный движок, или чтобы использовать существующую нативную библиотеку. Java позволяет вызывать нативный код через Java Native Interface (JNI), и Android предоставляет специальные средства для нативной разработки — Native Development Kit (NDK), в который входят в том числе заголовочные файлы, компилятор (Clang), отладчик (LLDB) и система сборки.

Хотя NDK в основном ориентирован на использование C/C++, с его помощью можно писать под Android и на других языках — в том числе Rust, Swift, Python, JavaScript и даже Haskell. Больше того, есть даже возможность портировать iOS-приложения (написанные на или Swift) на Android практически без изменений.

О безопасности

Классический Unix

Модель безопасности в классическом Unix основана на системе UID/GID — специальных номеров, которые ядро хранит для каждого процесса. Процессам с одинаковым UID разрешён доступ друг к другу, процессы с разным UID защищены друг от друга. Аналогично ограничивается доступ к файлам.

По смыслу каждый UID (user ID) соответствует своему пользователю — во времена создания Unix была нормальной ситуация, когда один компьютер одновременно использовался множеством людей. Таким образом, в Unix процессы и файлы разных людей были защищены друг от друга. Чтобы разрешить общий доступ к некоторым файлам, пользователи объединялись в группы, которым и соответствовал GID (group ID).

Читайте также:  Настройка нежелательных звонков от яндекс андроид

При этом всем программам, запускаемым пользователем, даётся полный доступ ко всему, к чему есть доступ у этого пользователя. Собственно, поскольку пользователь не может общаться с ядром напрямую, а взаимодействует с компьютером через shell и другие процессы — права пользователя и есть права программ, запущенных от его имени.

Такая модель подразумевает, что пользователь полностью доверяет всем программам, которые использует. В то время это было логично, потому что программы чаще всего либо были частью системы, либо создавались (писались и компилировались) самим пользователем.

В Unix есть и исключение из ограничений доступа — UID 0, который принято называть root. У него есть доступ ко всему в системе, и никакие ограничения на него не распространяются. Этот аккаунт использовался системным администратором; кроме того, под UID 0 запускаются многие системные сервисы.

В современном Linux эта модель была значительно расширена и обобщена, в том числе появились capabilities, позволяющие «получить часть root-прав», и реализующая мандатное управление доступом (mandatory access control, MAC) подсистема SELinux, которая позволяет дополнительно ограничить права (в том числе права root-процессов).

Всё изменилось

За несколько десятков лет, прошедших с создания Unix до создания Android, практика использования компьютеров («вычислителей») значительно изменилась.

Вместо машин, рассчитанных на параллельное использование многими пользователями (через терминалы — то, что сейчас эмулируют эмуляторы терминалов), появились персональные компьютеры, рассчитанные на использование одним человеком. Компьютеры перестали быть лишь рабочим инструментом и стали центром нашей цифровой жизни. С появлением мобильных устройств — сначала КПК, потом смартфонов, планшетов, умных часов и т.п. — эта тенденция только усилилась (потому что заниматься рабочими вопросами на мобильных устройствах относительно неудобно).

На таких устройствах хранятся гигабайты персональной информации, доступ к которой должен быть защищён и ограничен. В то же время расцвёл рынок сторонних приложений, которым у пользователя нет никаких оснований доверять.

Таким образом, в современных условиях вместо защиты разных пользователей друг от друга необходимо защищать от приложений другие приложения, пользовательские данные и саму систему. Кроме того, широкое распространение получили вирусы, которые обычно используют уязвимости в системе — для защиты от них нужно дополнительно защищать части системы друг от друга, чтобы использование одной уязвимости не давало злоумышленнику доступ ко всей системе.

Android

Хотя часть Android-приложений поставляется с системой — например, такие стандартные приложения, как Калькулятор, Часы и Камера — большинство приложений пользователи устанавливают из сторонних источников. Самый известный из них — Google Play Store, но есть и другие, например, F-Droid, Amazon Appstore, Яндекс.Store, китайские Baidu App Store, Xiaomi App Store, Huawei App Store и т.д. Кроме того, Android позволяет вручную устанавливать произвольные приложения из APK-файлов (это называют sideloading).

Как и другие Unix-подобные системы, Android использует для ограничения доступа существующий механизм UID/GID. При этом — в отличие от традиционного использования, когда UID соответствуют пользователям — в Android разные UID соответствуют разным приложениям. Поскольку процессы разных приложений запускаются с разными UID, уже на уровне ядра приложения защищены и изолированы друг от друга и не имеют доступа к системе и данным пользователя. Это образует песочницу (Application Sandbox) и позволяет пользователю устанавливать любые приложения без необходимости доверять им.

Чтобы всё-таки получить доступ к пользовательским данным, камере, совершению звонков и т.п., приложение должно получить от пользователя разрешение (permission). Некоторые из разрешений существуют в виде GID, в которые приложение добавляется, когда получает это разрешение — например, получение разрешения ACCESS_FM_RADIO помещает приложение в группу media , что позволяет ему получить доступ к файлу /dev/fm . Остальные существуют только на более высоком уровне (в виде записей в файле packages.xml ) и проверяются другими компонентами системы при обращении к высокоуровневому API через Binder.

Небольшая часть системных сервисов в Android запускается под UID 0, то есть root, но большинство используют специально выделенные номера UID, повышая при необходимости свои права с помощью Linux capabilities. Кроме того, Android использует SELinux — использование SELinux в Android называют SEAndroid — для ещё большего ограничения того, какие действия разрешено выполнять приложениям и системным сервисам.

Обычно Android не предоставляет пользователю прямой доступ к root-аккаунту, но в некоторых случаях у него есть возможность этот доступ получить. Как это происходит, зачем это нужно и какими опасностями это грозит я расскажу позднее.

В следующей статье (которая выходит уже через неделю) я расскажу о компонентах, из которых состоят приложения под Android, и об идеях, которые стоят за этой архитектурой.

Источник

Оцените статью