LTPO-дисплеи: Каким будет OLED в iPhone 13? Разбор
Совсем недавно знаменитый аналитик Минг-Чи Куо поделился новой информацией о грядущих смартфонах Apple, которые выйдут в этом году.
Давайте посмотрим, что же он нам наобещал:
- меньше челка,
- больше батарейка,
- отказ от Lightning в пользу MagSafe через поколение
- LTPO-экран с поддержкой частоты 120гц.
Так стоп! Что еще за LTPO? В чем его отличие от того, что есть сейчас? Это что какая-то новая технология экранов?
Для начала давайте вспомним какие два главных типа экранов бывают. В принципе есть OLED и LCD-экраны, то есть экраны на основе органических светодиодов, которые сами и являются источниками света, и экраны на основе жидких кристаллов, где светодиоды выступают только в качестве подсветки.
Тут важно понимать, что, в принципе не так важен тип экранов, как тот факт, что любой экран — это сложная слоистая структура.
Кроме самих диодов или цветовых фильтров, есть еще много других важных частей. Получается такой современный сэндвич. С помощью сложнейшего набора комбинаций, эти экраны печатаются слой за слоем.
И сама процедура печати современных экранов, по сути, основана на тех же технологиях что и создание современных процессоров, например, процессы литографии, химического и физического осаждения из газовой фазы, плазмо-химического травления, да и многие другие! Это сотни сложнейших и очень точных операций. Вообще это тема для отдельного ролика, тут давайте об экранах!
Только посмотрите на комплекс, который предлагает компания Applied Materials своим клиентам для создания гибких OLED-экранов! Обратите внимание — на человека, он тут для масштаба.
И при том, что за OLED и LCD-экранами стоят принципиально разные физические процессы, в их конструкции есть схожие участки. Давайте взглянем на картинку. Видите участок TFT на картинке.
Накатывает ностальгия, ведь это та самая популярная в нулевых аббревиатура, которая использовалась в рекламе всех экранов TFT LCD. Так вот, на самом деле эти TFT есть и в современных OLED-экранах.
В расшифровке это значит Thin-Film Transistor или Тонкоплёночный транзистор. Это слой транзисторов, которые в разных типах экранов используются для разных целей — в ЖК для контроля поляризации кристаллов, а в OLED-дисплеях они отвечают за включение и выключение каждого конкретного светодиода.
По-простому, это маленькие выключатели, которые контролируют подачу тока для каждого пикселя. Без транзисторов мы бы даже не смогли просто включать и выключать пиксели на экране! А этими транзисторами управляют отдельные специальные контролеры.
Транзисторы должны обладать одним важным параметром — например, в LCD-экранах они должны быть прозрачными или, в случае OLED-панелей либо прозрачными, либо полностью поглощающими свет, чтобы избегать артефактов изображения! А это меняет те материалы, из которых они сделаны, что в корне меняет технологии их производства!
Так вот, если вы думаете, что TFT-слой это что-то очень простое, то это совсем не так. Современные дисплеи — это очень сложное устройство и инженеры, и ученые бьются за улучшение каждого аспекта, не только самих пикселей, но и например скорости отклика, энергоэффективности. Посмотрите на фото в разрезе, полученное на электронном микроскопе.
А вот для сравнения структура транзистора в старых TFT экранах!
В любом современном смартфоне с OLED-экранам и даже во многих LCD-дисплеях используется так называемый слой транзисторов LTPS, что означет Low Temperature PolySilicon или низкотемпературный поликристаллический кремний. Это полупроводниковый материал, из которого сделан канал транзистора, то место через которое течет ток, когда транзистор открыт. Транзисторы, основанные на поликристаллическом кремнии, используются в TFT-слое и вообще в любом современном смартфоне с OLED-экранами.
Процесс производства LPTS включает в себя много тонкостей. Но главное — это специальная температурная обработка, что позволяет получать кремний с определенным размером кристаллов.
Такая структура, в свою очередь, повышает мобильность электронов, что делает возможным, увеличивать плотность пикселей на дюйм, то есть увеличивает разрешение экрана! Кроме того увеличивается энергоэффективность. Но есть проблема, частота ограничена 60Гц и не может быть динамической. Это связано с конструктивными ограничениями, потому что ток утекает с транзистора относительно медленно. А для увеличения до 120 Гц и более, производители вынуждены интегрировать специальные чипы, которые потребляют много энергии. Они занимаются контролем транзисторов в TFT-слое. То есть выигрыш от большой мобильности электронов теряется, когда мы говорим о больших частотах!
Вот тут мы и приходим LTPO или титр Low-Temperature Polycrystalline Oxide. На самом деле -это комбинация двух технологий: LPTS, о которой мы говорили выше, и IGZO.
Это специальный доработанный тип транзисторов, где используется дополнительный транзистор из другого материала. К транзистору из поликристаллическому кремнию добавляют специальный соседний сделанный из Оксида Индия, Цинка и Галлия, или IGZO — Indium gallium zinc oxide.
Получается очень сложная структура, только посмотрите в разрезе на схему зеленого пикселя OLED-экрана. И таких на экране миллионы!
И чего же удалось добиться используя комбинацию LTPS и IGZO технологий?
Одно преимущество — это уменьшение шума, что повышает точность использования экранов. Шум может возникать из-за низкой скорости утечки, тут же это происходит быстрее.
Но главное — энергоэффективность. Подсчитано, что экономия составит до 15 процентов из-за существенно меньшего тока? необходимого для включения транзистора! А как мы помним — экран это одно из самых прожорливых мест нашего телефона! Разница будет существенна.
И последнее — частота. Из-за использования Оксида появляется возможность как понижать частоту экрана до 1 Гц, так и повышать до более чем 144 Гц. Это все благодаря низким утечкам тока через транзистор. И такое можно делать без использования специальных усиливающих контроллеров. Все это происходит плавно и в зависимости от того, что вы сейчас делаете со своим устройством. В общем, производители нашли золотую середину!
И самое интересное, что такие экраны уже используются. Samsung начали ставить LTPO-экраны в свои смартфоны начиная с Galaxy Note20, в новых флагманах компании они тоже стоят. Также подобные дисплеи используют OnePlus и OPPO с своих устройствах.
А сама Apple опробовала технологию LTPO еще несколько лет назад. Они использовали их в своих часах Apple Watch, начиная с четвертого поколения, чтобы имелась возможность понижать частоту обновления экрана до 1 Гц, для экономии и без того маленького аккумулятора в часах. Вот так вот без громких анонсов начали использовать новое поколение транзисторов в экранах!
В общем, все как обычно — Apple берет лучшее из мира технологий и устанавливает в свои девайсы! Ждем 120 Гц в новых iPhone 13… А вы теперь будете знать почему iPhone и Samsung имеют лучшие экраны на рынке и умеют работать с адаптивной частотой.
Источник
Чем OLED-экран отличается от IPS. iPhone 11 против iPhone 11 Pro
У Apple три актуальных смартфона: iPhone 11, iPhone 11 Pro и 11 Pro Max.
iPhone 11 Pro и Pro Max отличаются от iPhone 11 типом и размером экранов. Топовый OLED в старших моделях против лучшего IPS на рынке в iPhone 11. Первый объективно круче, но и у второго есть сильные стороны.
До iPhone 11 я пользовался Xs Max и могу трезво судить о плюсах и минусах технологий. Кстати, да, глаза не вытекли.
Так в чем разница между OLED и IPS?
5 главных преимуществ OLED-экранов в сравнении с IPS
Два OLED и один IPS.
Apple называет экраны линейки 11 Pro Super Retina XDR. Компания намеренно не акцентирует внимание на OLED, ведь дисплеи для нее делает Samsung — она ставит такие же в свои современные смартфоны из линеек Galaxy S и Galaxy Note.
«Дисплей Super Retina XDR — наш лучший дисплей для iPhone», — Apple подчеркивает это на официальном сайте. От стандартных OLED других смартфонов такие экраны отличаются тонкой настройкой, которая подчеркивает преимущества технологии.
С OLED-экраном заряда аккумулятора хватит на все
1. Увеличенная энергоэффективность. У OLED-экранов нет привычной светодиодной подсветки, которая используется в IPS. Она не нужна, ведь они состоят из органических светодиодов, каждый из которых светится отдельно.
Это дает возможность увеличить время автономной работы смартфонов, чем в Apple особенно гордятся. Компания подчеркивает, что Super Retina XDR расходует до 15% меньше энергии, чем экраны других производителей.
Более энергоэффективный экран дал возможность увеличить время работы iPhone 11 Pro без подзарядки на 4 часа, а iPhone 11 Pro Max на 5 часов в сравнении с iPhone Xs и Xs Max. Новинки могут воспроизводить видео без остановки 18 и 20 часов соответственно.
Как OLED-экран iPhone отыгрывает под солнечными лучами
2. Яркость и контрастность. Стандартная яркость Super Retina XDR в линейке Pro — 800 кд/м². Экран iPhone 11 называют Liquid Retina HD, и его стандартная яркость на 150 кд/м² ниже — 650 кд/м².
Чем больше яркость, тем выше читаемость информации под лучами яркого солнца. На пляже листать iPhones на OLED будет куда приятнее. Это особенно заметно при включении новой темной темы сайта.
По контрастности разрыв IPS и OLED еще выше: 1400:1 против 2 000 000:1. Не сказал бы что это настолько критично в реальном использовании, но разница налицо.
Хорошо видно, что черный цвет в iPhone 11 больше похож на темно-серый
3. Глубина черного цвета. Чтобы показать максимально черный цвет, конкретные точки на OLED-экране выключаются. IPS же все равно подсвечивает весь дисплей, поэтому черный кажется темно-серым. Разница реально видна.
Самый простой тест — приложение «Калькулятор». Если открыть его на iPhone 11 и iPhone 11 Pro (Max), на первом будет видна разница между экраном и рамкой, а на втором они сольются.
Некоторые даже говорят, что темное оформление из iOS 13 неприятно использовать на IPS. Но у меня оно включено всегда, и мне норм.
HDR в iPhone 11 Pro поддерживает даже YouTube
4. Поддержка High Dynamic Range. Super Retina XDR поддерживает HDR, а Liquid Retina HD не поддерживает.
В режиме широкого динамического диапазона некоторые участки OLED-дисплеев могут выдавать яркость до 1200 кд/м². Например, на видео ночного неба вспыхивает молния. На старших моделях актуальных iPhone она будет выглядеть более реалистично.
Apple даже утверждает, что в этом случае экран Super Retina XDR можно сравнивать с монитором Pro Display XDR, который вместе с Mac Pro начнет продаваться уже в декабре.
Рамки вокруг экрана действительно слишком большие
5. Отдельная подсветка для пикселей. Именно из-за данной особенности у OLED-экранов заметно больше перспектив. Благодаря этому можно нарушать ровную поверхность и создавать любую форму.
Apple особенно гордится IPS-экраном Liquid Retina HD, потому что смогла сделать в нем вырез для True Depth и закруглить его углы. В Super Retina XDR реализовать все это было куда проще.
Именно из-за особенностей подсветки у iPhone 11 заметно более толстые рамки, чем у iPhone 11 Pro и модели Max.
5 главных преимуществ IPS-экранов в сравнении с OLED
Apple довела технологию IPS до максимально возможного уровня и назвала Liquid Retina HD. Это один из самых практичных экранов на рынке, который она сначала ставила в iPhone XR, а потом и в iPhone 11.
Инженеры использовали принципиально новую технологию подсветки, которая и дала им возможность сделать его необходимой формы. Стабильность поставок OLED под вопросом, поэтому от IPS компания откажется не скоро.
Чем чаще смотрите в экран смартфона, тем больше важно отсутствие ШИМ
1. Широтно-импульсная модуляция. ШИМ, если сокращенно. С помощью этой технологии большинство производителей смартфонов с OLED-экранами регулируют их яркость. Apple в их числе.
Чтобы установить уровень яркости 75%, именно столько времени в сумме подсветка каждого пикселя работает, а в остальное выключается. Мозг воспринимает это как изменение интенсивности свечения, но от этого могут болеть глаза и голова целиком.
Если частота включения и выключения меньше 200 Гц, пагубное действие технологии особенно критично. Согласно измерениям NotebookCheck, у iPhone 11 Pro 290,7 Гц и 245,1 Гц у iPhone 11 Pro Max. У IPS-экрана iPhone 11 нет ШИМ, поэтому вообще нет проблем.
Здесь хорошо видно, как OLED на iPhone уходит в розовый в сравнении с IPS на MacBook
2. Максимально правильная цветопередача. Экраны всех актуальных смартфонов Apple поддерживают широкий цветовой охват P3. Компания тонко настроила OLED, чтобы изображение на нем было максимально реалистичным.
Оно остается таким при максимальной яркости, но вот при ее уменьшении Super Retina XDR немного уходит в розовый — это видно на белом фоне.
Скорее всего, чтобы увеличить частоту обновления в ШИМ Apple также понижает напряжение на каждый пиксель. Технология называется DC dimming и как раз приводит к таким последствиям. Это бросается в глаза только при прямом сравнении с IPS.
Отдельных пикселей на экране iPhone 11 просто не видно
3. Строение пикселей и разрешение. Когда Apple представляла iPhone 4, особой ее гордостью стал именно экран Retina с плотностью больше 300 пикселей на дюйм. Отдельные точки на таком человеческому глазу уже не видны.
Тем не менее, сегодня у iPhone 11 Pro и 11 Pro Max 458 пикселей на дюйм. С одной стороны, кажется что это значение избыточно. С другой стороны, создается впечатление, что iPhone 11 с 326 пикселями на дюйм застрял в прошлом.
Такой подход легко объясняется строением субпикселей, из которых состоят отдельные точки на экране. У IPS стандартная схема RGB, поэтому для нее хватает 300+ PPI. OLED использует PenTile и аналоги, для которых в самый раз 450+ PPI.
iPhone 11 с IPS выигрывает с точки зрения нагрузки на процессор и аккумулятор. Здесь меньше — лучше.
Замена IPS-экрана всегда обходится дешевле
4. Доступность и распространенность. IPS-экраны проще и дешевле. Вы особенно сможете ощутить это, если разобьете его и столкнетесь с заменой. Разница в ремонте будет достигать двух раз.
Актуальные iPhone рассматривать нет смысла, ведь деталей для них еще слишком мало, и цены в космосе. С предыдущим поколением ситуация более наглядная. За замену экрана iPhone XR просят 7–8 тыс. руб., iPhone Xs (Max) — 11–13 тыс. руб.
Ощутима разница и при покупке нового устройства. Не в последнюю очередь именно из-за этого я взял iPhone 11, а не iPhone 11 Pro.
Чем дольше включен OLED-экран, тем хуже ему может быть — это особенно касается витринных образцов
5. Надежность и долговечность. У OLED есть несколько проблем, которые приписывают им долгое время. Главная из них — выгорание точек.
Если пользовались Android-смартфонами с поддержкой всегда активных экранов, точно обращали внимание, что информация на них постоянно двигается. Это нужно для того, чтобы одни и те же пиксели не выгорали.
Сложно сказать, насколько это критично в отношении iPhone 11 Pro, но это заставляет задуматься о их надежности. Технология IPS проверена временем и точно не страдает такими болезнями.
Все это справедливо только для пары iPhone 11 и 11 Pro
На этой фотографии особенно хорошо видна разница в цветопередаче и рамках вокруг экрана
К преимуществам OLED можно было бы также отнести технологию постоянно активного экрана, которая становится возможной именно благодаря отдельной подсветке для каждой точки. Но Apple не реализовала ее в линейке iPhone 11 Pro, поэтому здесь мимо.
Обычно OLED также отличается возможностью активации по тапу. Тем не менее, Apple смогла реализовать это даже на IPS-экране iPhone 11, поэтому преимуществом это также не становится.
В сумме же нужно смотреть на конкретные модели экранов OLED и IPS. У iPhone 11 Pro (Max) экран не без недостатков, но он очевидно лучше, чем у iPhone 11 со своими достоинствами. Но это частный случай.
Надеюсь, теперь стало понятно, что ругать iPhone 11 за маленькое разрешение не стоит — это его преимущество, а не недостаток. Плюс, это не единственное его отличие от OLED в старших моделях.
Источник