ViewStub
Компонент ViewStub — это легкий View, не имеющий размеров. Находится в разделе Advanced. Он ничего не рисует на экране, если его разместить на форме. Так зачем он нужен?
ViewStub выполняет роль заглушки, заменяя собой дочерние элементы внутри родительской разметки.
Возможно ваша разметка чересчур перегружена тяжёлыми элементами, которые редко используются. ViewStub позволят разгрузить разметку. Предположим, вы разработали экран с книжной полкой. Если у пользователя нет книг в коллекции, то нет особого смысла выводить TextView, Button и другие элементы с указанием авторов книги, названия и т.д. В нужный момент вы программно подгружаете невидимую разметку. По существу, это лёгкий элемент для отображения или сокрытия в иерархии View. Каждый ViewStub просто должен включать в себя атрибут android:layout для указания разметки, которую нужно отобразить.
Создадим новый проект и добавим ViewStub и другие компоненты.
Мы указали у ViewStub в атрибуте android:layout разметку @layout/viewstub_layout. Создадим её в папке res/layout:
Теперь переходим к основной активности и напишем код для нажатия кнопки, который и будет выводить подготовленную разметку:
Булева переменная mIsClicked позволяет уберечься от повторного показа ViewStub. C помощью метода inflate() мы выводим разметку из файла viewstub_layout.xml на экран вместо самого ViewStub. Обратите внимание на атрибут android:inflatedId=»@+id/inflate» у ViewStub в первой разметке. Когда мы вызываем метод inflate() и ViewStub станет видимым, он больше не будет являться частью иерархии View, и ID для корня View заменится на указанный в атрибуте android:inflatedId идентификатор inflate (android:id, указанный для ViewStub, действует только до того момента, пока ViewStub не станет видимым). В этом легко убедиться. Добавим для кнопки из разметки viewstub_layout.xml обработчик нажатия кнопки:
Напишем код для щелчка:
Когда мы нажимаем на первую кнопку, то выводим на экран контейнер ViewStub, который содержит ещё одну кнопку. Кроме того у нас появился новый идентификатор inflate и мы пробуем закрасить разметку в синий цвет. Если запустить проект, то увидим работающий пример. А если мы установим идентификатор самого ViewStub — viewStub, то получим ошибку.
Источник
Как работает Android, часть 1
В этой серии статей я расскажу о внутреннем устройстве Android — о процессе загрузки, о содержимом файловой системы, о Binder и Android Runtime, о том, из чего состоят, как устанавливаются, запускаются, работают и взаимодействуют между собой приложения, об Android Framework, и о том, как в Android обеспечивается безопасность.
Немного фактов
Android — самая популярная операционная система и платформа для приложений, насчитывающая больше двух миллиардов активных пользователей. На ней работают совершенно разные устройства, от «интернета вещей» и умных часов до телевизоров, ноутбуков и автомобилей, но чаще всего Android используют на смартфонах и планшетах.
Android — свободный и открытый проект. Большинство исходного кода (который можно найти на https://source.android.com) распространяется под свободной лицензией Apache 2.0.
Компания Android Inc. была основана в 2003 году и в 2005 году куплена Google. Публичная бета Android вышла в 2007 году, а первая стабильная версия — в 2008, с тех пор мажорные релизы выходят примерно раз в год. Последняя на момент написания стабильная версия Android — 7.1.2 Nougat.
Android is Linux
По поводу такой формулировки было много споров, так что сразу поясню, что именно я имею в виду под этой фразой: Android основан на ядре Linux, но значительно отличается от большинства других Linux-систем.
Среди исходной команды разработчиков Android был Robert Love, один из самых известных разработчиков ядра Linux, да и сейчас компания Google остаётся одним из самых активных контрибьюторов в ядро, поэтому неудивительно, что Android построен на основе Linux.
Как и в других Linux-системах, ядро Linux обеспечивает такие низкоуровневые вещи, как управление памятью, защиту данных, поддержку мультипроцессности и многопоточности. Но — за несколькими исключениями — вы не найдёте в Android других привычных компонентов GNU/Linux-систем: здесь нет ничего от проекта GNU, не используется X.Org, ни даже systemd. Все эти компоненты заменены аналогами, более приспособленными для использования в условиях ограниченной памяти, низкой скорости процессора и минимального потребления энергии — таким образом, Android больше похож на встраиваемую (embedded) Linux-систему, чем на GNU/Linux.
Другая причина того, что в Android не используется софт от GNU — известная политика «no GPL in userspace»:
We are sometimes asked why Apache Software License 2.0 is the preferred license for Android. For userspace (that is, non-kernel) software, we do in fact prefer ASL 2.0 (and similar licenses like BSD, MIT, etc.) over other licenses such as LGPL.
Android is about freedom and choice. The purpose of Android is promote openness in the mobile world, and we don’t believe it’s possible to predict or dictate all the uses to which people will want to put our software. So, while we encourage everyone to make devices that are open and modifiable, we don’t believe it is our place to force them to do so. Using LGPL libraries would often force them to do just that.
Само ядро Linux в Android тоже немного модифицировано: было добавлено несколько небольших компонентов, в том числе ashmem (anonymous shared memory), Binder driver (часть большого и важного фреймворка Binder, о котором я расскажу ниже), wakelocks (управление спящим режимом) и low memory killer. Исходно они представляли собой патчи к ядру, но их код был довольно быстро добавлен назад в upstream-ядро. Тем не менее, вы не найдёте их в «обычном линуксе»: большинство других дистрибутивов отключают эти компоненты при сборке.
В качестве libc (стандартной библиотеки языка C) в Android используется не GNU C library (glibc), а собственная минималистичная реализация под названием bionic, оптимизированная для встраиваемых (embedded) систем — она значительно быстрее, меньше и менее требовательна к памяти, чем glibc, которая обросла множеством слоёв совместимости.
В Android есть оболочка командной строки (shell) и множество стандартных для Unix-подобных систем команд/программ. Во встраиваемых системах для этого обычно используется пакет Busybox, реализующий функциональность многих команд в одном исполняемом файле; в Android используется его аналог под названием Toybox. Как и в «обычных» дистрибутивах Linux (и в отличие от встраиваемых систем), основным способом взаимодействия с системой является графический интерфейс, а не командная строка. Тем не менее, «добраться» до командной строки очень просто — достаточно запустить приложение-эмулятор терминала. По умолчанию он обычно не установлен, но его легко, например, скачать из Play Store (Terminal Emulator for Android, Material Terminal, Termux). Во многих «продвинутых» дистрибутивах Android — таких, как LineageOS (бывший CyanogenMod) — эмулятор терминала предустановлен.
Второй вариант — подключиться к Android-устройству с компьютера через Android Debug Bridge (adb). Это очень похоже на подключение через SSH:
Из других знакомых компонентов в Android используются библиотека FreeType (для отображения текста), графические API OpenGL ES, EGL и Vulkan, а также легковесная СУБД SQLite.
Кроме того, раньше для реализации WebView использовался браузерный движок WebKit, но начиная с версии 7.0 вместо этого используется установленное приложение Chrome (или другое; список приложений, которым разрешено выступать в качестве WebView provider, конфигурируется на этапе компиляции системы). Внутри себя Chrome тоже использует основанный на WebKit движок Blink, но в отличие от системной библиотеки, Chrome обновляется через Play Store — таким образом, все приложения, использующие WebView, автоматически получают последние улучшения и исправления уязвимостей.
It’s all about apps
Как легко заметить, использование Android принципиально отличается от использования «обычного Linux» — вам не нужно открывать и закрывать приложения, вы просто переключаетесь между ними, как будто все приложения запущены всегда. Действительно, одна из уникальных особенностей Android — в том, что приложения не контролируют напрямую процесс, в котором они запущены. Давайте поговорим об этом подробнее.
Основная единица в Unix-подобных системах — процесс. И низкоуровневые системные сервисы, и отдельные команды в shell’е, и графические приложения — это процессы. В большинстве случаев процесс представляет собой чёрный ящик для остальной системы — другие компоненты системы не знают и не заботятся о его состоянии. Процесс начинает выполняться с вызова функции main() (на самом деле _start ), и дальше реализует какую-то свою логику, взаимодействуя с остальной системой через системные вызовы и простейшее межпроцессное общение (IPC).
Поскольку Android тоже Unix-подобен, всё это верно и для него, но в то время как низкоуровневые части — на уровне Unix — оперируют понятием процесса, на более высоком уровне — уровне Android Framework — основной единицей является приложение. Приложение — не чёрный ящик: оно состоит из отдельных компонентов, хорошо известных остальной системе.
У приложений Android нет функции main() , нет одной точки входа. Вообще, Android максимально абстрагирует понятие приложение запущено как от пользователя, так и от разработчика. Конечно, процесс приложения нужно запускать и останавливать, но Android делает это автоматически (подробнее я расскажу об этом в следующих статьях). Разработчику предлагается реализовать несколько отдельных компонентов, каждый из которых обладает своим собственным жизненным циклом.
In Android, however, we explicitly decided we were not going to have a main() function, because we needed to give the platform more control over how an app runs. In particular, we wanted to build a system where the user never needed to think about starting and stopping apps, but rather the system took care of this for them… so the system had to have some more information about what is going on inside of each app, and be able to launch apps in various well-defined ways whenever it is needed even if it currently isn’t running.
Для реализации такой системы нужно, чтобы приложения имели возможность общатся друг с другом и с системными сервисами — другими словами, нужен очень продвинутый и быстрый механизм IPC.
Этот механизм — Binder.
Binder
Binder — это платформа для быстрого, удобного и объектно-ориентированного межпроцессного взаимодействия.
Разработка Binder началась в Be Inc. (для BeOS), затем он был портирован на Linux и открыт. Основной разработчик Binder, Dianne Hackborn, была и остаётся одним из основных разработчиков Android. За время разработки Android Binder был полностью переписан.
Binder работает не поверх System V IPC (которое даже не поддерживается в bionic), а использует свой небольшой модуль ядра, взаимодействие с которым из userspace происходит через системные вызовы (в основном ioctl ) на «виртуальном устройстве» /dev/binder . Со стороны userspace низкоуровневая работа с Binder, в том числе взаимодействие с /dev/binder и marshalling/unmarshalling данных, реализована в библиотеке libbinder.
Низкоуровневые части Binder оперируют в терминах объектов, которые могут пересылаться между процессами. При этом используется подсчёт ссылок (reference-counting) для автоматического освобождения неиспользуемых общих ресурсов и уведомление о завершении удалённого процесса (link-to-death) для освобождения ресурсов внутри процесса.
Высокоуровневые части Binder работают в терминах интерфейсов, сервисов и прокси-объектов. Описание интерфейса, предоставляемого программой другим программам, записывается на специальном языке AIDL (Android Interface Definition Language), внешне очень похожем на объявление интерфейсов в Java. По этому описанию автоматически генерируется настоящий Java-интерфейс, который потом может использоваться и клиентами, и самим сервисом. Кроме того, по .aidl -файлу автоматически генерируются два специальных класса: Proxy (для использования со стороны клиента) и Stub (со стороны сервиса), реализующие этот интерфейс.
Для Java-кода в процессе-клиенте прокси-объект выглядит как обычный Java-объект, который реализует наш интерфейс, и этот код может просто вызывать его методы. При этом сгенерированная реализация прокси-объекта автоматически сериализует переданные аргументы, общается с процессом-сервисом через libbinder, десериализует переданный назад результат вызова и возвращает его из Java-метода.
Stub работает наоборот: он принимает входящие вызовы через libbinder, десериализует аргументы, вызывает абстрактную реализацию метода, сериализует возвращаемое значение и передаёт его процессу-клиенту. Соответственно, для реализации сервиса программисту достаточно реализовать абстрактные методы в унаследованном от Stub классе.
Такая реализация Binder на уровне Java позволяет большинству кода использовать прокси-объект, вообще не задумываясь о том, что его функциональность реализована в другом процессе. Для обеспечения полной прозрачности Binder поддерживает вложенные и рекурсивные межпроцессные вызовы. Более того, использование Binder со стороны клиента выглядит совершенно одинаково, независимо от того, расположена ли реализация используемого сервиса в том же или в отдельном процессе.
Для того, чтобы разные процессы могли «найти» сервисы друг друга, в Android есть специальный сервис ServiceManager, который хранит, регистрирует и выдаёт токены всех остальных сервисов.
Binder широко используется в Android для реализации системных сервисов (например, пакетного менеджера и буфера обмена), но детали этого скрыты от разработчика приложений высокоуровневыми классами в Android Framework, такими как Activity, Intent и Context. Приложения могут также использовать Binder для предоставления друг другу собственных сервисов — например, приложение Google Play Services вообще не имеет собственного графического интерфейса для пользователя, но предоставляет разработчикам других приложений возможность пользоваться сервисами Google Play.
Подробнее про Binder можно узнать по этим ссылкам:
В следующей статье я расскажу о некоторых идеях, на которых построены высокоуровневые части Android, о нескольких его предшественниках и о базовых механизмах обеспечения безопасности.
Источник
Моки, стабы и шпионы в Spock Framework
Spock предоставляет 3 мощных (но разных по сути) инструмента, упрощающих написание тестов: Mock, Stub и Spy.
Довольно часто коду, который нужно протестировать, требуется взаимодействовать с внешними модулями, называющимися зависимостями (в оригинальной статье используется термин collaborators, который не очень распространён в русскоязычной среде).
Модульные тесты чаще всего разрабатываются для тестирования одного изолированного класса при помощи различных вариантов моков: Mock, Stub и Spy. Так тесты будут надёжнее и будут реже ломаться по мере того, как код зависимостей эволюционирует.
Такие изолированные тесты менее подвержены проблемам при изменении внутренних деталей реализации зависимостей.
От переводчика: каждый раз, когда я использую Spock Framework для написания тестов, я чувствую, что могу ошибиться при выборе способа подмены зависимостей. В этой статье есть максимально краткая шпаргалка по выбору механизма для создания моков.
Mocks
Используйте Mock для:
- проверки контракта между тестируемым кодом и зависимостями
- проверки того, что методы зависимостей вызываются корректное число раз
- проверки корректности параметров, с которыми вызывается код зависимостей
Stubs
Используйте Stub для:
- предоставления предопределённых результатов вызовов
- выполнения предопределённых действий, ожидаемых от зависимостей, таких как выбрасывание исключений
Spies
Бойтесь шпионов (Spy). Как сказано в документации Spock:
Подумайте дважды, прежде чем использовать этот механизм. Возможно, вам стоит изменить дизайн вашего решения и реорганизовать ваш код.
Но так уж случается, что бывают ситуации, когда мы должны работать с легаси кодом. Легаси код бывает сложно или даже невозможно протестировать при помощи моков и стабов. В этом случае есть всего один вариант решения — использовать Spy.
Лучше иметь легаси код, покрытый тестами с использованием Spy, чем не иметь тестов для легаси совсем.
Используйте Spy для:
- тестирования легаси кода, который невозможно протестировать другими методами
- проверки того, что методы зависимостей вызываются корректное число раз
- проверки корректности передаваемых параметров
- предоставления предопределённого ответа от зависимостей
- выполнения предопределённых действий в ответ на вызовы методов зависимостей
Mocks
Вся сила моков проявляется, когда задача модульного теста состоит в проверке контракта между тестируемым кодом и зависимостями. Давайте посмотрим на следующий пример, где у нас имеется контроллер FooController , который использует FooService в качестве зависимости, и протестируем эту функциональность при помощи моков.
В этом сценарии мы хотим написать тест, который проверит:
- контракт между FooController и FooService
- FooService.doSomething(name) вызывается корректное число раз
- FooService.doSomething(name) вызывается с корректным параметром
Взглянем на тест:
Приведённый тест создаёт мок сервиса:
Также тест проверяет, что FooService.doSomething(name) вызывается один раз, и параметр, переданный в него, совпадает со строкой «Sally» .
Приведённый код решает 4 важные задачи:
- создаёт мок для FooService
- убеждается в том, что FooService.doSomething(String name) вызывается ровно один раз с параметром String и значением «Sally»
- изолирует тестируемый код, заменяя реализацию зависимости
Stubs
Использует ли тестируемый код зависимости? Является ли целью тестирования удостовериться, что тестируемый код работает корректно при взаимодействии с зависимостями? Являются ли результаты вызовов методов зависимостей входными значениями для тестируемого кода?
Если поведение тестируемого кода изменяется в зависимости от поведения зависимостей, то вам необходимо использовать стабы (Stub).
Давайте посмотрим на следующий пример с FooController и FooService и протестируем функциональность контроллера при помощи стабов.
Создать стаб можно так:
Приведённый код решает 4 важные задачи:
- создаёт стаб FooService
- убеждается в том, что FooService.doSomething(String name) вернёт строку «Stub did something» независимо от переданного параметра (поэтому мы использовали символ _ )
- изолирует тестируемый код, заменяя реализацию зависимости на стаб
Spies
Пожалуйста не читайте этот раздел.
Пропускайте и переходите к следующему.
Всё ещё читаете? Ну что ж, хорошо, давайте разбираться со Spy.
Не используйте Spy. Как сказано в документации Spock:
Подумайте дважды, прежде чем использовать этот механизм. Возможно, вам стоит изменить дизайн вашего решения и реорганизовать ваш код.
При этом бывают ситуации, когда нам приходится работать с легаси кодом. Легаси код бывает невозможно протестировать с помощью моков или стабов. В этом случае шпион остаётся единственным жизнеспособным вариантом.
Шпионы отличаются от моков или стабов, потому что они работают не как заглушки.
Когда зависимость подменяется моком или стабом, создается тестовый объект, а настоящий исходный код зависимости не выполняется.
Шпион, с другой стороны, выполнит основной исходный код зависимости, для которой был создан шпион, но шпион позволит вам изменять то, что возвращает шпион, и проверять вызовы методов, так же как моки и стабы. (Отсюда и название Spy).
Давайте посмотрим на следующий пример FooController , который использует FooService , а затем протестируем функциональность с помощью шпиона.
Создать экземпляр-шпион довольно просто:
В приведённом коде шпион позволяет нам проверить вызов FooService.doSomething(name) , количество вызовов и значения параметров. Более того, шпион изменяет реализацию метода, чтобы вернуть другое значение.
Приведённый код решает 4 важные задачи:
- создаёт экземпляр шпион для FooService
- проверяет взаимодействие с зависимостями
- проверяет, как приложение работает в соответствии с определёнными результатами вызовов методов зависимостей
- изолирует тестируемый код, заменяя реализацию зависимости на стаб
Какой из вариантов использовать: Mock, Stub или Spy?
Это вопрос, с которым сталкиваются многие разработчики. Этот FAQ может помочь, если вы не уверены, какой из подходов использовать.
Q: Является ли целью тестирования проверка контракта между тестируемым кодом и зависимостями?
A: Если вы ответили Да, используйте Mock
Q: Является ли целью тестирования удостовериться, что тестируемый код работает верно при взаимодействии с зависимостями?
A: Если вы ответили Да, используйте Stub
Q: Являются ли результаты вызовов методов зависимостей входными значениями для тестируемого кода?
A: Если вы ответили Да, используйте Stub
Q: Работаете ли вы с легаси кодом, который очень сложно протестировать, и у вас не осталось вариантов?
A: Попробуйте использовать Spy
Код примеров
Вы можете найти код всех примеров этой статьи по ссылке:
Источник