Измеритель пульсаций освещения андроид

Увидеть пульсацию

Я часто пишу о пульсации плохих светодиодных ламп (а теперь ещё и о пульсации подсветки телевизоров). Напомню, пульсация света может приводить к усталости глаз и мозга, вызывать головные боли и приводить к обострению нервных заболеваний.

Для определения пульсации света многие используют камеры смартфонов — если свет пульсирует, по экрану бегут полосы, причём чем они чернее, тем пульсация больше.

Но это лишь косвенный «взгляд на пульсацию» — мы видим интерференцию между пульсацией света и работой электронного затвора камеры. На некоторых смартфонах полос может и не быть из-за программного подавления пульсаций.

Сегодня я дам вам возможность увидеть пульсацию непосредственно, как она есть.

С помощью камеры, снимающей со скоростью 1200 кадров в секунду, я зафиксировал пульсацию света обычной лампы накаливания 25 Вт (у ламп накаливания чем меньше мощность, тем больше пульсация) и плохой светодиодной лампы.

Я воспроизвожу видео со скоростью 10 кадров в секунду, поэтому получается замедление в 120 раз.

Нить лампы накаливания не успевает остыть, поэтому пульсация небольшая — коэффициент пульсации 23%. Это означает, что минимум яркости лишь на 23% меньше уровня максимума. Такая пульсация практически незаметна глазами и вреда от неё нет.

А вот так светит плохая светодиодная лампа.

100 раз в секунду лампа полностью гаснет, а потом загорается снова. Коэффициент пульсации 100%.

Такая пульсация раздражает. Её отлично видно боковым зрением и при быстром переводе взгляда (объекты в поле зрения «распадаются» из-за стробоскопического эффекта). Именно от такой пульсации света устают глаза и может болеть голова.

К счастью, ламп с пульсацией на рынке всё меньше и меньше. Лампы с обычными цоколями E27 сейчас почти все без пульсации, пульсирующие лампы с цоколями E14 ещё встречаются (чаще всего филаментные свечки и шарики). К сожалению, более половины светодиодных микроламп с цоколем G9 имеют пульсацию 100% (очень сложно разместить в малюсеньком корпусе хороший драйвер со сглаживающим конденсатором).

Никогда не используйте в жилых помещениях лампы с видимой пульсацией света. Проверить наличие или отсутствие пульсации можно как с помощью смартфона, так и с помощью обычного карандаша.

Источник

Определяем мерцание лампочки с помощью ручки и телефона

Пульсация (мерцание) света – это крайне негативное явление, которое оказывает влияние на наш с вами головной мозг и провоцирует такие явления как: резь в глазах, раздражительность, усталость, рассеянность внимания.

Особенно от повышенной пульсации страдают дети до 14 лет . Поэтому крайне важно покупать именно качественные лампы освещения с минимальной пульсацией. В этой статье я расскажу вам про два простых теста, которые вас обезопасят от явного брака.

Каковы нормы пульсации

Перед тестами хочу сказать несколько слов о нормативах, которым должны следовать производители ламп освещения. Так вот, согласно СНиП 23-05-95 «Естественное и искусственное освещение», коэффициент пульсации освещения рабочей поверхности не должен превышать предел в 10% либо 20% в зависимости от степени напряженности работы.

Читайте также:  Как удалить security warning с андроида

А если вы в основном трудитесь за компьютером, то согласно СанПиН 2.2.2/2.4.1340-03, коэффициент пульсации вообще не должен превышать 5% .

Конечно, можно довериться производителю и верить написанному на коробке.

Либо же купить специальный прибор (который стоит не так уж и дешево) и уже с ним выбирать лампы. Нет желания тратиться на прибор? Тогда читайте дальше про два простых теста.

Тест камерой смартфона

Сейчас просто нет телефонов без видеокамер. Так вот первый простейший тест — это взять телефон, включить камеру, попросить продавца зажечь лампу и навести камеру на лампу.

Если вы увидите черные полосы, бегущие по экрану или же сильно заметное мерцание, то значит коэффициент пульсации проверяемой лампы существенно больше.

Так же можно сфотографировать работающую лампу. На фото остались темные полосы? Лампа не подходит для вашего дома.

Важно. Таким способом мы наблюдаем не саму пульсацию, а ее косвенное проявление. То есть наблюдается интерференция между пульсацией света и функционированием затвора камеры телефона.

Если у вас в настройках включена функция подавления пульсации, то на экране телефона вы не увидите темных полос. Помните об этом.

Тест карандашом

Еще один простой тест по определению мерцания: взять обычный карандаш или же ручку за кончик. И начать быстро перемещать его перед лампочкой. Если при таком перемещении карандаш (ручка) как бы распадается на несколько отдельных карандашей, то в таком случае данные лампы следует обходить десятой дорогой.

Если же карандаш (ручка) как бы размазывается на экране, то явных проблем с пульсацией нет.

Примечание. С помощью таких простых тестов можно выявить явный брак светодиодных ламп, у которых пульсация близка к 100% и происходит на частоте до 100 Гц. Так же запомните, что пульсации свыше 300 Гц считаются безопасными и не регламентируются.

Вот такими простыми способами вы сможете себя избавить от явного шлака все еще попадающегося на наших прилавках.

Если вам понравился материал, то ставьте палец вверх и оставляйте свое мнение в комментариях.

Источник

Измеритель пульсаций освещения андроид

Можно ли измерить освещенность с помощью телефона?

Работая со светом невозможно развиваться без ежедневного изучения тенденций и новинок рынка. Одним из последних наших открытий стало приложение, благодаря которому с помощь обычного смартфона можно замерять количество света в помещении. Безусловно, с профессиональной точки зрения мы не могли остаться равнодушными к такому вызову. Немецкий Институт Прикладной Светотехники (DIAL GmbH) опубликовали статью, в которой рассматривался именно интересовавший нас вопрос: может ли смартфон стать достойной заменой люксметру?

Люксметр против смартфона: может ли специальное приложение стать альтернативой измерительному прибору?

Если такая замена действительно себя оправдывает, то это стало бы не то чтоб революцией, но, как минимум, очень выгодным предложением. Посудите сами, люксметр — удовольствие недешевое. А вот смартфон есть практически у каждого. И специальные приложения либо бесплатные, или стоят дешево. Поскольку наша компания профессионально работает со светом, идея замера фотометрических параметров с помощью телефона нас умиляет. Но, справедливости и любопытства ради, мы решили провести эксперимент. Цель исследования: сравнение результатов работы соответствующих приложений с показателями нашего штатного люксметра.

Тестируемое оборудование

В нашем эксперименте принимали участие iphone разных серий, а также телефоны Sony, Samsung и Nokiа:

Производитель Операционная система
iPhone5 iOS
iPhone 5S iOS
iPhone 6 iOS
Sony Xperia Z1 Android
Sony Xperia Z2 Android
Samsung Galaxy S5 Android
Nokia Lumia 925 Windows Phone

Программное обеспечение

Мы выбрали следующие приложения (большинство из них бесплатны), и установили их на каждой из систем:

Название Производитель Операционная система Возможность калибровки Цена
Galactica Luxmeter Flint Soft Ltd. iOS нет
LightMeter by whitegoods Whitegoods iOS есть
LuxMeterPro Advanced AM PowerSoftware iOS есть 7,99€
Luxmeter KHTSXR Android есть
Light Meter Pro Mannoun.Net Android есть
Lux Light Meter Geogreenapps Android есть
Sensor List Ryder Donahue Windows Phone есть

Для справки

Контрольное измерение произведено с помощью откалиброванного люксметра PRC Krochmann (Model 106e, специальная модель, класс А).

Используемые источники света

Для теста мы выбрали три различных источника света:

  • галогенная лампа низкого напряжения;
  • компактная люминесцентная лампа (цветовая температура 2700 K);
  • LED (цветовая температура 3000 K).

Чтоб упростить наши исследования, мы решили оставить один источник света — LED.

Условия тестирования

Испытание проходило в помещении без источников дневного или искусственного освещения. На горизонтальной поверхности мы разместили источники света. На них поочередно устанавливалась освещенность 100 лк, 500 лк и 1000 лк. Фотометрическая головка нашего люксметра была расположена перпендикулярно оси светильника. Затем, точно так же, мы размещали смартфоны с установленными приложениями. Фронтальная камера и датчик яркости находились там же, где до этого располагался фотометр.

Такое расположение подходило всем приложениям кроме платного «Luxmeter Pro Advanced», так как оно для измерения освещённости использует свет, отраженный от поверхности. В этом приложении также доступны настройки типов источника света, расстояния до него и т.д.

Некоторые приложения позволяли произвести калибровку, и, если была такая возможность, мы проводили ее в соответствии с инструкциями производителя, а именно на 100 лк.

Результаты

Во время нашего теста мы выяснили, что хотя в некоторых приложениях можно было произвести калибровку до определенного значения, определить его точно было достаточно сложно. Таким образом, или шаг был большим, либо значение в 100 лк вообще не устанавливалось (например, максимальное значение, которое удалось установить на iPhone 5 с LightMeter by whitegoods — 34 лк). Часто отклонения от контрольных значений оказывались весьма высокими (до 113% у Samsung Galaxy S5 с приложением «Lux Light Meter» от Geogreenapps). При использовании эталонна 500 лк дисплей смартфона показывал 1,063 лк. Самое низкое отклонение в 3% было на iPhone 5 с «LightMeter by whitegoods». При 500 лк этот смартфон показывал 484 лк. В то же время, мы не можем утверждать, что именно эта комбинация всегда будет приводить к наименьшим возможным отклонениям. В случае использования значения 100 лк и этого же приложения, отклонение достигало 89%, а устройство показывало 11 лк.

Также мы заметили, что отображаемые значения на устройствах от Sony, Samsung и Nokia были значительно выше эталонных, в то время, как на iPhone существенно ниже. Среднее отклонение во всех приложениях на Android-смартфонах и на телефонах с Windows Phone были приблизительно на 60% выше контрольных. Расхождение значений измеренных различными iPhone было на 60% ниже опорных.

Мы также заметили, что различные приложения, установленные на смартфонах от Samsung и Sony, показывали близкие значения. Скорее всего, в этих устройствах для измерения освещенности используется датчик яркости, а не камера.

В некоторых моделях Samsung можно переключиться в режим инженерного меню с помощью комбинации *#0*#. Выбрав пункт «Датчик света», вы можете узнать предполагаемую освещенность без установки приложения. Так что в этом случае специальная программа может и не понадобиться. Тем не менее, показатели на этих устройствах также отклонились от эталонного значения в рамках 37%-113%.

Будут ли совпадать результаты на аналогичных смартфонах с одинаковыми приложениями?

Чтобы проверить это, мы использовали 4 идентичных iPhone 5 с установленными на них приложениями «Galactica Luxmeter» и «LightMeter by whitegoods». К сожалению, нас ждало разочарование. Все четыре смартфона показали совершенно разные показатели.

Мы считаем, что причиной таких колебаний является отличие комплектующих в телефонах. Такие отклонения пользователь не замечает при повседневном использовании, но при непосредственном тестировании они заметны.

Всегда ли есть процентное отклонение от эталонного значения?

Если вы всегда используете смартфон с одним и тем же приложением, вы можете предположить, что можно достаточно точно производить замеры, зная процентное отклонение от эталонного значения. Но всегда ли этот процент одинаковый?

Для того, чтобы проверить это, мы провели измерения освещённости на 10 лк, 100 лк, 1000 лк и 10000 лк с помощью iPhone 5 размещенным на оптической скамье в черной комнате. Увеличение яркости можно очень точно задавать путем регулировки расстояния между источником света и приемником.

В качестве источника излучения снова использовался светодиодный светильник с цветовой температурой 3000 K. В этом тесте мы рассмотрели показатели двух различных приложений. Оказалось, значения разных программ отклоняются друг от друга, в некоторых случаях до 358% (12 лк до 55 лк при эталоне 100 лк). Если рассмотреть процент отклонений от эталонных значений, то никакой закономерности мы не увидим.

При использовании приложения «Galactica Luxmeter» значения были выше контрольных на 180% при 10 лк и на 50% ниже эталонных значений при 10 000 лк. «LightMeter by whitegoods» было откалиброванным на 10 лк. При опорных 100 лк отклонение составило 88% в меньшую сторону, а при 10 000 лк — 59%. Значения всех остальных приложений были так же существенно ниже контрольных, а сам процент отклонений все время менялся.

К тому же, мы обнаружили, что измерения, проведенные с помощью передней и задней камеры показывают различные значения. К тому же, некоторые приложения никогда не показывают 0 лк, даже если на камеру свет не попадает и она закрыта «заглушкой».

Заключение

Результаты доказывают, что серьезные измерения освещенности возможны только с помощью профессионального оборудования. Оно оснащено откалиброванным датчиком, гарантирующим, что оценка освещенности будет проведена в соответствии с чувствительностью человеческого глаза при дневном свете. Кроме того, приборы позволяют измерить количество света в зависимости от угла падения луча. Смартфоны не могут сделать ни того, ни другого, в противном случае они не смогут выполнять свои функции как телефон.

Разработчики приложений не утверждают, что смартфоны могут заменить профессиональные приборы. Утверждение, что некоторые приборы позволяют провести калибровку звучит эффектно, но, к сожалению, технически почти невозможно установить нужное значение. Даже при использовании одного и того же приложения на идентичных смартфонах результаты оценки отличаются.

Поэтому, к сожалению, приложения на самом деле не слишком помогают, даже в том, чтобы получить общее представление об освещенности. Более того, результат может оказаться кардинально противоположным и ввести пользователя в заблуждение.

Поэтому, если вам действительно понадобится измерить освещенность, воспользуйтесь люксметром, а телефон оставьте для звонков любимым.

Мы стремимся сделать освещение по-настоящему эффективным

Обратитесь к нашим специалистам для подбора оптимального решения!

Источник

Читайте также:  Док ридер для андроид
Оцените статью