- Все о смартфоне — что это такое и как он работает?
- История создания смартфонов
- Что такое смартфон
- Чем смартфон отличается от телефона
- Для чего нужен смартфон
- Как устроен смартфон
- Корпус
- Процессор и материнская плата
- Оперативная и основная память
- Батарея
- Датчики и модули
- Дисплей
- Принцип работы
- Как работает Android, часть 1
- Немного фактов
- Android is Linux
- It’s all about apps
- Binder
Все о смартфоне — что это такое и как он работает?
Смартфоны прочно вошли в нашу жизнь, позволяя поддерживать общение и став незаменимым средством для работы и творчества. В этой статье описано все о смартфоне, что нужно знать новому пользователю, включая информацию о его создании, устройстве и использовании.
История создания смартфонов
Идея придумать смартфон, появилась сразу после создания в 1990-х карманного персонального компьютера. Кто первый изобрел смартфон? Объединить коммуникатор и мобильный телефон впервые удалось компании IBM. Первый телефон, который был выпущен в виде концепта — это IBM Simon со встроенным органайзером. В последующие годы было выпущено еще три или четыре устройства, в каждом из которых производители приближались к заветной цели: OmniGo HP 700 LX, Nokia 2110, Nokia 9000.
Что такое смартфон
Определение из Википедии. В переводе с английского, «смарт» значит «умный» или «сообразительный». Значение слова «смартфон» понять несложно — это умный телефон с набором дополнительных функций.
Чем смартфон отличается от телефона
В мобильных телефонах, практически с самого их появления, были функции органайзера (будильник, заметки, календарь). Но производители старались его расширить. Так появился термин «смартфон» — двусоставное слово, образованное слиянием двух других: «смарт» и «фон».
В отличие от мобильных телефонов, смартфоны имеют более развитую операционную систему (Android, iOS, Windows), для которой разработчики могут писать программный код, реализуя новые идеи. После установки стороннего ПО возможности аппарата становятся еще шире.
Однако разница между обычным телефоном и смартфоном стерлась, поскольку большая часть устройств (если не говорить о самых дешевых аппаратах) открывают доступ в интернет, позволяют получать почту и оснащены прочими важными функциями.
Для чего нужен смартфон
Функции смартфона включают в себя не только возможность осуществлять звонки, как это было в случае с мобильным телефоном. Они подразумевают гораздо больше. Устройство можно использовать для серфинга в интернете, GPS-навигации, общения в социальных сетях, учебы, чтения книг, мобильной фотографии, детских развивающих видеоигр, а также обработки видео. Мобильный гаджет может вести подсчет пройденых шагов и следить за состоянием артериального давления. Он может быть использован для занятий спортом, включая бег, спортивную ходьбу и прыжки со скакалкой.
Как устроен смартфон
Возможно, впервые взяв в руки новый смартфон, вы размышляли над тем, из чего же он состоит. Существуют разные модификации, но основные элементы имеет любое устройство. Ниже рассмотрим каждую составляющую немного подробнее.
Корпус
Корпус устройства защищает внутренние компоненты, включая его основные элементы, от повреждений. Он обеспечивает более удобное взаимодействие пользователя с устройством. На корпусе расположены кнопки, сенсорное стекло для управления телефоном, а также порты для подключения наушников и зарядного устройства.
При изготовлении корпуса применяются различные материалы: стекло, керамика, металл и пластик. Различают следующие типы корпусов: моноблок (без движущихся частей), слайдер, раскладушка и сгибаемый. Последний вид все еще находится в разработке, поскольку создание эластичных гибких элементов все еще очень дорого, а значит нерентабельно с практической точки зрения.
Процессор и материнская плата
Без материнской платы с процессором (SoC) использование аппарата было бы невозможным. Печатная схема, содержит не только процессор, но и множество других важных элементов, например контролер заряда, LTE-модем, Bluetooth, Wi-Fi, графический ускоритель.
Существует несколько основных производителей, которые занимаются разработкой собственных процессоров, поэтому большая часть смартфонов работают на их основе: MediaTek, Qualcomm, Samsung, Huawei, Apple.
Оперативная и основная память
Оперативная память (ОЗУ) — это энергозависимая память, используемая операционной системой, например Андроид, для временного хранения и обработки информации. Без ее участия все процессы и вычисления производились бы гораздо дольше, а многопоточный режим был бы невозможен. Среди поколений оперативной памяти существуют: LPDDR3, LPDDR4, LPDDR4X, LPDDR5. Каждое следующее поколение работает производительнее предыдущего. На момент написания статьи можно было найти мобильные устройства с ОЗУ от 1 до 16 ГБ.
Основная память, в отличие от оперативной, предназначена для долговременного хранения информации. На внутреннем накопителе находится прошивка, операционная система и системные программы. Сюда же можно сохранять видео, игры, музыку, изображения, документы.
Батарея
В качестве портативного источника энергии телефон использует встроенный аккумулятор. Он может быть съемным или несъемным — это зависит от модификации, используемого устройства. Большая часть всех мобильных аппаратов оснащаются литий-ионными батареями — они неприхотливы в использовании, не обладают эффектом «памяти» и не нуждаются в калибровке. После того как аккумулятор заряжен, он автоматически перестает получать заряд от зарядного.
Датчики и модули
Для полноценной работы мобильного устройства нужен соответствующий набор датчиков и модулей. Аппарат состоит из:
- Микрофонов. Большая часть аппаратов имеют два микрофона для записи стереозвука.
- Двух динамиков: один для разговоров, а второй для воспроизведения мультимедийных файлов.
- Основной и фронтальной камеры. Нужны для ведения фото и видеосъемки. Фронтальная камера, среди прочего используется для селфи-снимков и для общения по видеосвязи.
- Беспроводных модулей Wi-Fi, LTE, Bluetooth, IrDA, GPS, NFC, беспроводной зарядки.
- Датчика Хола, акселерометра, термодатчиков, шагомера, а также датчиков приближения и освещенности.
Все модули и датчики подключаются к материнской плате. Они работают благодаря вычислительной мощности процессора. С помощью дополнительных программ можно управлять ими, что в значительной степени расширяет функционал устройства.
Дисплей
Один из самых важных компонентов, без которого пользоваться мобильным устройством было бы невозможно — это экран. Все, что пользователь видит на нем обрабатывается внутренними компонентами. Существует два типа дисплеев, которые устанавливаются в мобильные телефоны:
- AMOLED, Super AMOLED — на основе светодиодов.
- IPS, PLS, TFT — на основе жидких кристаллов.
Основой всех жидкокристаллических дисплеев является LED-подсветка. Жидкие кристаллы играют роль фильтров, проходя через которые, белый свет изменяет свой цвет.
Однако, AMOLED-дисплеи работают по-другому. Здесь каждый пиксель — это отдельный светодиод, который может излучать тот или иной свет. Такие экраны более энергоэффективны, так как, если пиксели не работают, экран не потребляет энергию аккумулятора. Дисплеи, которые созданы на основе жидких кристаллов дешевле, поэтому устанавливаются в бюджетных устройствах.
Принцип работы
Мобильный процессор обрабатывает получаемую из оперативной и встроенной памяти информацию. Для работы беспроводных сетей используются соответствующие модули, а для комфортного взаимодействия с пользователем — дополнительные сенсоры. Аккумулятор заряжается от сети с помощью зарядного устройства и необходим в качестве источника питания.
Без камеры можно было бы обойтись. Однако, пользователи не видят смартфон без нее, поскольку она необходима для съемки. Базовые элементы расположены внутри корпуса, а на лицевой панели сенсорный дисплей позволяет вводить и получать необходимую информацию.
Источник
Как работает Android, часть 1
В этой серии статей я расскажу о внутреннем устройстве Android — о процессе загрузки, о содержимом файловой системы, о Binder и Android Runtime, о том, из чего состоят, как устанавливаются, запускаются, работают и взаимодействуют между собой приложения, об Android Framework, и о том, как в Android обеспечивается безопасность.
Немного фактов
Android — самая популярная операционная система и платформа для приложений, насчитывающая больше двух миллиардов активных пользователей. На ней работают совершенно разные устройства, от «интернета вещей» и умных часов до телевизоров, ноутбуков и автомобилей, но чаще всего Android используют на смартфонах и планшетах.
Android — свободный и открытый проект. Большинство исходного кода (который можно найти на https://source.android.com) распространяется под свободной лицензией Apache 2.0.
Компания Android Inc. была основана в 2003 году и в 2005 году куплена Google. Публичная бета Android вышла в 2007 году, а первая стабильная версия — в 2008, с тех пор мажорные релизы выходят примерно раз в год. Последняя на момент написания стабильная версия Android — 7.1.2 Nougat.
Android is Linux
По поводу такой формулировки было много споров, так что сразу поясню, что именно я имею в виду под этой фразой: Android основан на ядре Linux, но значительно отличается от большинства других Linux-систем.
Среди исходной команды разработчиков Android был Robert Love, один из самых известных разработчиков ядра Linux, да и сейчас компания Google остаётся одним из самых активных контрибьюторов в ядро, поэтому неудивительно, что Android построен на основе Linux.
Как и в других Linux-системах, ядро Linux обеспечивает такие низкоуровневые вещи, как управление памятью, защиту данных, поддержку мультипроцессности и многопоточности. Но — за несколькими исключениями — вы не найдёте в Android других привычных компонентов GNU/Linux-систем: здесь нет ничего от проекта GNU, не используется X.Org, ни даже systemd. Все эти компоненты заменены аналогами, более приспособленными для использования в условиях ограниченной памяти, низкой скорости процессора и минимального потребления энергии — таким образом, Android больше похож на встраиваемую (embedded) Linux-систему, чем на GNU/Linux.
Другая причина того, что в Android не используется софт от GNU — известная политика «no GPL in userspace»:
We are sometimes asked why Apache Software License 2.0 is the preferred license for Android. For userspace (that is, non-kernel) software, we do in fact prefer ASL 2.0 (and similar licenses like BSD, MIT, etc.) over other licenses such as LGPL.
Android is about freedom and choice. The purpose of Android is promote openness in the mobile world, and we don’t believe it’s possible to predict or dictate all the uses to which people will want to put our software. So, while we encourage everyone to make devices that are open and modifiable, we don’t believe it is our place to force them to do so. Using LGPL libraries would often force them to do just that.
Само ядро Linux в Android тоже немного модифицировано: было добавлено несколько небольших компонентов, в том числе ashmem (anonymous shared memory), Binder driver (часть большого и важного фреймворка Binder, о котором я расскажу ниже), wakelocks (управление спящим режимом) и low memory killer. Исходно они представляли собой патчи к ядру, но их код был довольно быстро добавлен назад в upstream-ядро. Тем не менее, вы не найдёте их в «обычном линуксе»: большинство других дистрибутивов отключают эти компоненты при сборке.
В качестве libc (стандартной библиотеки языка C) в Android используется не GNU C library (glibc), а собственная минималистичная реализация под названием bionic, оптимизированная для встраиваемых (embedded) систем — она значительно быстрее, меньше и менее требовательна к памяти, чем glibc, которая обросла множеством слоёв совместимости.
В Android есть оболочка командной строки (shell) и множество стандартных для Unix-подобных систем команд/программ. Во встраиваемых системах для этого обычно используется пакет Busybox, реализующий функциональность многих команд в одном исполняемом файле; в Android используется его аналог под названием Toybox. Как и в «обычных» дистрибутивах Linux (и в отличие от встраиваемых систем), основным способом взаимодействия с системой является графический интерфейс, а не командная строка. Тем не менее, «добраться» до командной строки очень просто — достаточно запустить приложение-эмулятор терминала. По умолчанию он обычно не установлен, но его легко, например, скачать из Play Store (Terminal Emulator for Android, Material Terminal, Termux). Во многих «продвинутых» дистрибутивах Android — таких, как LineageOS (бывший CyanogenMod) — эмулятор терминала предустановлен.
Второй вариант — подключиться к Android-устройству с компьютера через Android Debug Bridge (adb). Это очень похоже на подключение через SSH:
Из других знакомых компонентов в Android используются библиотека FreeType (для отображения текста), графические API OpenGL ES, EGL и Vulkan, а также легковесная СУБД SQLite.
Кроме того, раньше для реализации WebView использовался браузерный движок WebKit, но начиная с версии 7.0 вместо этого используется установленное приложение Chrome (или другое; список приложений, которым разрешено выступать в качестве WebView provider, конфигурируется на этапе компиляции системы). Внутри себя Chrome тоже использует основанный на WebKit движок Blink, но в отличие от системной библиотеки, Chrome обновляется через Play Store — таким образом, все приложения, использующие WebView, автоматически получают последние улучшения и исправления уязвимостей.
It’s all about apps
Как легко заметить, использование Android принципиально отличается от использования «обычного Linux» — вам не нужно открывать и закрывать приложения, вы просто переключаетесь между ними, как будто все приложения запущены всегда. Действительно, одна из уникальных особенностей Android — в том, что приложения не контролируют напрямую процесс, в котором они запущены. Давайте поговорим об этом подробнее.
Основная единица в Unix-подобных системах — процесс. И низкоуровневые системные сервисы, и отдельные команды в shell’е, и графические приложения — это процессы. В большинстве случаев процесс представляет собой чёрный ящик для остальной системы — другие компоненты системы не знают и не заботятся о его состоянии. Процесс начинает выполняться с вызова функции main() (на самом деле _start ), и дальше реализует какую-то свою логику, взаимодействуя с остальной системой через системные вызовы и простейшее межпроцессное общение (IPC).
Поскольку Android тоже Unix-подобен, всё это верно и для него, но в то время как низкоуровневые части — на уровне Unix — оперируют понятием процесса, на более высоком уровне — уровне Android Framework — основной единицей является приложение. Приложение — не чёрный ящик: оно состоит из отдельных компонентов, хорошо известных остальной системе.
У приложений Android нет функции main() , нет одной точки входа. Вообще, Android максимально абстрагирует понятие приложение запущено как от пользователя, так и от разработчика. Конечно, процесс приложения нужно запускать и останавливать, но Android делает это автоматически (подробнее я расскажу об этом в следующих статьях). Разработчику предлагается реализовать несколько отдельных компонентов, каждый из которых обладает своим собственным жизненным циклом.
In Android, however, we explicitly decided we were not going to have a main() function, because we needed to give the platform more control over how an app runs. In particular, we wanted to build a system where the user never needed to think about starting and stopping apps, but rather the system took care of this for them… so the system had to have some more information about what is going on inside of each app, and be able to launch apps in various well-defined ways whenever it is needed even if it currently isn’t running.
Для реализации такой системы нужно, чтобы приложения имели возможность общатся друг с другом и с системными сервисами — другими словами, нужен очень продвинутый и быстрый механизм IPC.
Этот механизм — Binder.
Binder
Binder — это платформа для быстрого, удобного и объектно-ориентированного межпроцессного взаимодействия.
Разработка Binder началась в Be Inc. (для BeOS), затем он был портирован на Linux и открыт. Основной разработчик Binder, Dianne Hackborn, была и остаётся одним из основных разработчиков Android. За время разработки Android Binder был полностью переписан.
Binder работает не поверх System V IPC (которое даже не поддерживается в bionic), а использует свой небольшой модуль ядра, взаимодействие с которым из userspace происходит через системные вызовы (в основном ioctl ) на «виртуальном устройстве» /dev/binder . Со стороны userspace низкоуровневая работа с Binder, в том числе взаимодействие с /dev/binder и marshalling/unmarshalling данных, реализована в библиотеке libbinder.
Низкоуровневые части Binder оперируют в терминах объектов, которые могут пересылаться между процессами. При этом используется подсчёт ссылок (reference-counting) для автоматического освобождения неиспользуемых общих ресурсов и уведомление о завершении удалённого процесса (link-to-death) для освобождения ресурсов внутри процесса.
Высокоуровневые части Binder работают в терминах интерфейсов, сервисов и прокси-объектов. Описание интерфейса, предоставляемого программой другим программам, записывается на специальном языке AIDL (Android Interface Definition Language), внешне очень похожем на объявление интерфейсов в Java. По этому описанию автоматически генерируется настоящий Java-интерфейс, который потом может использоваться и клиентами, и самим сервисом. Кроме того, по .aidl -файлу автоматически генерируются два специальных класса: Proxy (для использования со стороны клиента) и Stub (со стороны сервиса), реализующие этот интерфейс.
Для Java-кода в процессе-клиенте прокси-объект выглядит как обычный Java-объект, который реализует наш интерфейс, и этот код может просто вызывать его методы. При этом сгенерированная реализация прокси-объекта автоматически сериализует переданные аргументы, общается с процессом-сервисом через libbinder, десериализует переданный назад результат вызова и возвращает его из Java-метода.
Stub работает наоборот: он принимает входящие вызовы через libbinder, десериализует аргументы, вызывает абстрактную реализацию метода, сериализует возвращаемое значение и передаёт его процессу-клиенту. Соответственно, для реализации сервиса программисту достаточно реализовать абстрактные методы в унаследованном от Stub классе.
Такая реализация Binder на уровне Java позволяет большинству кода использовать прокси-объект, вообще не задумываясь о том, что его функциональность реализована в другом процессе. Для обеспечения полной прозрачности Binder поддерживает вложенные и рекурсивные межпроцессные вызовы. Более того, использование Binder со стороны клиента выглядит совершенно одинаково, независимо от того, расположена ли реализация используемого сервиса в том же или в отдельном процессе.
Для того, чтобы разные процессы могли «найти» сервисы друг друга, в Android есть специальный сервис ServiceManager, который хранит, регистрирует и выдаёт токены всех остальных сервисов.
Binder широко используется в Android для реализации системных сервисов (например, пакетного менеджера и буфера обмена), но детали этого скрыты от разработчика приложений высокоуровневыми классами в Android Framework, такими как Activity, Intent и Context. Приложения могут также использовать Binder для предоставления друг другу собственных сервисов — например, приложение Google Play Services вообще не имеет собственного графического интерфейса для пользователя, но предоставляет разработчикам других приложений возможность пользоваться сервисами Google Play.
Подробнее про Binder можно узнать по этим ссылкам:
В следующей статье я расскажу о некоторых идеях, на которых построены высокоуровневые части Android, о нескольких его предшественниках и о базовых механизмах обеспечения безопасности.
Источник