- Пишем голосового ассистента на Python
- Введение
- Что умеет мой голосовой ассистент?
- Шаг 1. Обработка голосового ввода
- Шаг 2. Конфигурация голосового ассистента
- Шаг 3. Обработка команд
- 1 способ
- 2 способ
- Шаг 4. Добавление мультиязычности
- Шаг 5. Немного машинного обучения
- Заключение
- Алиса, Google Assistant, Siri, Alexa. Как писать приложения для голосовых ассистентов
- Первый пункт — поднять бэкэнд
- Яндекс.Алиса. Начнем с простого
- Google Assistant. Новый уровень
- Apple SiriKit. Кратко о том, почему Siri отстает
- Экспертное мнение. Про Amazon Alexa, продакшн и будущее.
- Что нас ждет впереди
Пишем голосового ассистента на Python
Введение
Технологии в области машинного обучения за последний год развиваются с потрясающей скоростью. Всё больше компаний делятся своими наработками, тем самым открывая новые возможности для создания умных цифровых помощников.
В рамках данной статьи я хочу поделиться своим опытом реализации голосового ассистента и предложить вам несколько идей для того, чтобы сделать его ещё умнее и полезнее.
Что умеет мой голосовой ассистент?
Описание умения | Работа в offline-режиме | Требуемые зависимости |
Распознавать и синтезировать речь | Поддерживается | pip install PyAudio (использование микрофона) |
pip install pyttsx3 (синтез речи)
Для распознавания речи можно выбрать одну или взять обе:
- pip install SpeechRecognition (высокое качество online-распознавания, множество языков)
- pip install vosk (высокое качество offline-распознавания, меньше языков)
Шаг 1. Обработка голосового ввода
Начнём с того, что научимся обрабатывать голосовой ввод. Нам потребуется микрофон и пара установленных библиотек: PyAudio и SpeechRecognition.
Подготовим основные инструменты для распознавания речи:
Теперь создадим функцию для записи и распознавания речи. Для онлайн-распознавания нам потребуется Google, поскольку он имеет высокое качество распознавания на большом количестве языков.
А что делать, если нет доступа в Интернет? Можно воспользоваться решениями для offline-распознавания. Мне лично безумно понравился проект Vosk.
На самом деле, необязательно внедрять offline-вариант, если он вам не нужен. Мне просто хотелось показать оба способа в рамках статьи, а вы уже выбирайте, исходя из своих требований к системе (например, по количеству доступных языков распознавания бесспорно лидирует Google).
Теперь, внедрив offline-решение и добавив в проект нужные языковые модели, при отсутствии доступа к сети у нас автоматически будет выполняться переключение на offline-распознавание.
Замечу, что для того, чтобы не нужно было два раза повторять одну и ту же фразу, я решила записывать аудио с микрофона во временный wav-файл, который будет удаляться после каждого распознавания.
Таким образом, полученный код выглядит следующим образом:
Возможно, вы спросите «А зачем поддерживать offline-возможности?»
Я считаю, что всегда стоит учитывать, что пользователь может быть отрезан от сети. В таком случае, голосовой ассистент всё еще может быть полезным, если использовать его как разговорного бота или для решения ряда простых задач, например, посчитать что-то, порекомендовать фильм, помочь сделать выбор кухни, сыграть в игру и т.д.
Шаг 2. Конфигурация голосового ассистента
Поскольку наш голосовой ассистент может иметь пол, язык речи, ну и по классике, имя, то давайте выделим под эти данные отдельный класс, с которым будем работать в дальнейшем.
Для того, чтобы задать нашему ассистенту голос, мы воспользуемся библиотекой для offline-синтеза речи pyttsx3. Она автоматически найдет голоса, доступные для синтеза на нашем компьютере в зависимости от настроек операционной системы (поэтому, возможно, что у вас могут быть доступны другие голоса и вам нужны будут другие индексы).
Также добавим в в main-функцию инициализацию синтеза речи и отдельную функцию для её проигрывания. Чтобы убедиться, что всё работает, сделаем небольшую проверку на то, что пользователь с нами поздоровался, и выдадим ему обратное приветствие от ассистента:
На самом деле, здесь бы хотелось самостоятельно научиться писать синтезатор речи, однако моих знаний здесь не будет достаточно. Если вы можете подсказать хорошую литературу, курс или интересное документированное решение, которое поможет разобраться в этой теме глубоко — пожалуйста, напишите в комментариях.
Шаг 3. Обработка команд
Теперь, когда мы «научились» распознавать и синтезировать речь с помощью просто божественных разработок наших коллег, можно начать изобретать свой велосипед для обработки речевых команд пользователя 😀
В моём случае я использую мультиязычные варианты хранения команд, поскольку у меня в демонстрационном проекте не так много событий, и меня устраивает точность определения той или иной команды. Однако, для больших проектов я рекомендую разделить конфигурации по языкам.
Для хранения команд я могу предложить два способа.
1 способ
Можно использовать прекрасный JSON-подобный объект, в котором хранить намерения, сценарии развития, ответы при неудавшихся попытках (такие часто используются для чат-ботов). Выглядит это примерно вот так:
Такой вариант подойдёт тем, кто хочет натренировать ассистента на то, чтобы он отвечал на сложные фразы. Более того, здесь можно применить NLU-подход и создать возможность предугадывать намерение пользователя, сверяя их с теми, что уже есть в конфигурации.
Подробно этот способ мы его рассмотрим на 5 шаге данной статьи. А пока обращу ваше внимание на более простой вариант
2 способ
Можно взять упрощенный словарь, у которого в качестве ключей будет hashable-тип tuple (поскольку словари используют хэши для быстрого хранения и извлечения элементов), а в виде значений будут названия функций, которые будут выполняться. Для коротких команд подойдёт вот такой вариант:
Для его обработки нам потребуется дополнить код следующим образом:
В функции будут передаваться дополнительные аргументы, сказанные после командного слова. То есть, если сказать фразу «видео милые котики«, команда «видео» вызовет функцию search_for_video_on_youtube() с аргументом «милые котики» и выдаст вот такой результат:
Пример такой функции с обработкой входящих аргументов:
Ну вот и всё! Основной функционал бота готов. Далее вы можете до бесконечности улучшать его различными способами. Моя реализация с подробными комментариями доступна на моём GitHub.
Ниже мы рассмотрим ряд улучшений, чтобы сделать нашего ассистента ещё умнее.
Шаг 4. Добавление мультиязычности
Чтобы научить нашего ассистента работать с несколькими языковыми моделями, будет удобнее всего организовать небольшой JSON-файл с простой структурой:
В моём случае я использую переключение между русским и английским языком, поскольку мне для этого доступны модели для распознавания речи и голоса для синтеза речи. Язык будет выбран в зависимости от языка речи самого голосового ассистента.
Для того, чтобы получать перевод мы можем создать отдельный класс с методом, который будет возвращать нам строку с переводом:
В main-функции до цикла объявим наш переводчик таким образом: translator = Translation()
Теперь при проигрывании речи ассистента мы сможем получить перевод следующим образом:
Как видно из примера выше, это работает даже для тех строк, которые требуют вставки дополнительных аргументов. Таким образом можно переводить «стандартные» наборы фраз для ваших ассистентов.
Шаг 5. Немного машинного обучения
А теперь вернёмся к характерному для большинства чат-ботов варианту с JSON-объектом для хранения команд из нескольких слов, о котором я упоминала в пункте 3. Он подойдёт для тех, кто не хочет использовать строгие команды и планирует расширить понимание намерений пользователя, используя NLU-методы.
Грубо говоря, в таком случае фразы «добрый день«, «добрый вечер» и «доброе утро» будут считаться равнозначными. Ассистент будет понимать, что во всех трёх случаях намерением пользователя было поприветствовать своего голосового помощника.
С помощью данного способа вы также сможете создать разговорного бота для чатов либо разговорный режим для вашего голосового ассистента (на случаи, когда вам нужен будет собеседник).
Для реализации такой возможности нам нужно будет добавить пару функций:
А также немного модифицировать main-функцию, добавив инициализацию переменных для подготовки модели и изменив цикл на версию, соответствующую новой конфигурации:
Однако, такой способ сложнее контролировать: он требует постоянной проверки того, что та или иная фраза всё ещё верно определяется системой как часть того или иного намерения. Поэтому данным способом стоит пользоваться с аккуратностью (либо экспериментировать с самой моделью).
Заключение
На этом мой небольшой туториал подошёл к концу.
Мне будет приятно, если вы поделитесь со мной в комментариях известными вам open-source решениями, которые можно внедрить в данный проект, а также вашими идеями касательно того, какие ещё online и offline-функции можно реализовать.
Документированные исходники моего голосового ассистента в двух вариантах можно найти здесь.
P.S: решение работает на Windows, Linux и MacOS с незначительными различиями при установке библиотек PyAudio и Google.
Кстати, тех, кто планирует строить карьеру в IT, я буду рада видеть на своём YouTube-канале IT DIVA. Там вы сможете найти видео по тому, как оформлять GitHub, проходить собеседования, получать повышение, справляться с профессиональным выгоранием, управлять разработкой и т.д.
Источник
Алиса, Google Assistant, Siri, Alexa. Как писать приложения для голосовых ассистентов
Рынок голосовых ассистентов расширяется, особенно для русскоязычных пользователей. 2 недели назад Яндекс рассказала впервые про платформу Яндекс.Диалоги, 2 месяца назад Google представила возможность писать диалоги для Google Assistant на русском языке, 2 года назад со сцены Bill Graham Civic Auditorium Apple выпустила в открытое плавание SiriKit. Фактически, появляется новая отрасль разработки, где должны быть свои проектировщики, архитекторы и разработчики. Идеальный момент, чтобы поговорить про голосовые помощники и api для них.
В этой статье не будет подробных туториалов. Это статья об идеях и интересных технических деталях, на которых построены инструменты для сторонних разработчиков основных игроков рынка: Apple Siri, Google Assistant и Алисы от Яндекса.
Теорию без практики изучать скучно. Представим, что перед нами стоит задача от только что придуманной пиццерии «ДоРеМи». Руководство компании хочет, чтобы покупатель имел возможность узнать меню пиццерии и заказать пиццу голосом. Заказ еды оставим на вторую итерацию, а сейчас займемся меню. Добавим команду «Что входит в состав ?». Если пользователь вводит некорректную команду, то вывод будет состоять из списка пицц. Задача простая. Идеально подходит, чтобы изучить технологию и подготовиться к дальнейшему расширению.
Первый пункт — поднять бэкэнд
ВНИМАНИЕ! Android разработчик поднимает сервер на node.js. Слабонервным лучше пропустить эту часть.
Сервер нам нужен для хранения информации о пиццах и для дальнейшего взаимодействия с апи ассистентов. Бэкэнд будет написан на node.js вместе с фреймворком express для настройки веб-приложения. Разворачивать будем на платформе Now от компании Zeit. Платформа бесплатна и проста в использовании. Вводим команду «now» в терминале для старта скрипта деплоя и в ответ получаем ссылку на наше веб-приложение.
Для инициализации проекта используем Express Generator. Результатом генерации будет отличный каркас для веб приложений, но здесь много лишнего для простого апи: шаблоны для страниц, страницы ошибок, папки для ресурсов. Оставим только самое необходимое.
Базу данных использовать не будем. Данные у нас статические, достаточно будет одного объекта в js — список пицц с названиями и ингредиентами.
Добавим метод, который по объекту пиццы будет выводить ее состав. Если же пицца не найдена, то ответом будет меню пиццерии.
Яндекс.Алиса. Начнем с простого
Яндекс.Диалоги — базовая комплектация машины, на которой можно ездить. Но все равно не хватает кондиционера. Платформа от Яндекса идеальна для изучения азов: простая, как три копейки, но при этом содержит в себе концепции, на которых построено большинство ассистентов.
Основная единица платформы — диалоги. Диалоги — скиллы, созданные сторонними разработчиками. Добавить новый функционал в основной разговор с ассистентом не получится. Хотелось бы взять фразу «Алиса, закажи мне пиццу», но пиццерий много. Пользователю придется сказать активационную команду: «Алиса, вызови мне ДоРеМи». Тогда сервис понимает, что нужно переключиться на диалог от «ДоРеМи». Мы принимаем власть в свои руки и управляем процессом на своем сервере, через реквесты и респонсы, используя технологию вебхуков.
Вебхук, по своей сути, POST запрос, который отправляется на сервер. Сервер настроен на прием запроса, его обработку и отправление ответа на url, который указал клиент. Клиент при этом не тратит время на ожидание ответа.
Настройки, которые нужно прописать для создания диалога в личном кабинете: название, тематика диалога, активационное имя и url на сервер.
Дальше только настройка сервера на обработку запросов. Принимаем json, отправляем json. А еще проще, если отбросить все шелуху с приемом json, его парсингом, с извлечением данных и обратными действиями в процессе отправки ответа, то мы принимаем текст пользователя и возвращаем текст Алисы. Добро пожаловать в 70-е, во времена текстовых интерфейсов.
У нас есть строка с командой пользователя. Чтобы возвращать состав пиццы по команде пользователя, нам нужно вычленить название пиццы и в ответ прислать фразу. Вычленять будем обычным string.contains(фраза). Чтобы идея сработала, модернизируем наш список пицц, добавив к ним список основ (морфема слова без окончания), которые могут встречаться в запросе.
Немного изменим функцию, которая возвращает состав пиццы по команде пользователя.
Обрабатываем JSON, отправляем корректный ответ и добавляем кнопку, которая перенаправит пользователя на сайт пиццерии. Кнопки в Алисе — единственная возможность привнести разнообразие в обычный текстовый вывод. На кнопку можно назначить реплику пользователя либо открытие браузера по url. Используйте deep linking, чтобы связать ассистент и приложение в один удобный процесс. Например, при заказе пиццы можно настроить переход на экран оплаты в приложении, где уже сохранены платежные данные или есть возможность оплатить через Google/Apple Pay.
С помощью параметра tts(text-to-speach) можно настроить фонотеку голосового ответа Алисы: ударение, произношение и пробелы. В tts лучше передавать транскрипцию вместо орфографически правильного написания. Например, «пажалуста». Так речь Алисы будет естественнее.
Тестировать диалог проще некуда. В личном кабинете можно поговорить через консоль со своим диалогом и почитать json’ы.
На данный момент диалог в стадии черновика. Следующим шагом будет публикация в каталоге Яндекса. Перед публикацией он проходит проверку на соответствие требованиям Яндекса: достоверность информации, грамотность, этичность и остальные формальные качества.
Google Assistant. Новый уровень
Если Диалоги — это базовая комплектация автомобиля, то Actions on Google — комплектация с массажным креслом, автопилотом и персональным водителем, инструкция к которым прилагается на китайском языке. Инструмент от Google сильнее, богаче, но сложнее. И входной порог в технологию выше. У Яндекса гениально лаконичная и простая документация. Про Google сказать такое не могу. Actions on Google построен на тех же аксиомах, что и Диалоги: активационная команда, общение через апи, использование вебхуков, отделение стороннего диалога от основного.
Простота — главное преимущество и проблема Диалогов. Проблема в том, что всю архитектуру нужно строить самому. Простейший алгоритм вычленения частей из текста пользователя, реализованный выше, нельзя расширить на новые команды. Приходиться изобретать велосипеды. В такие моменты понимаешь, почему графический UI до сих рулит. Но Google реализовал продукты, которые освобождают разработчика от скучных скриптуемых процессов: классификация команд пользователя и работа с реквестами и респонсами. Первая задача решается фреймворком DialogFlow aka Api.Ai, вторая — объемной библиотекой под node.js. Нам остается подсоединить апи к Actions через node.js. На первый взгляд, что это лишнее усложнение, но сейчас я покажу, что этот подход выигрывает в проектах, где команд больше, чем одна.
DialogFlow решает типичную задачу машинного обучения — задачу классификации, в нашем случае классификация пользовательских команд по категориям. Для понимания и настройки работы фреймворка разберем два понятия из терминологии DialogFlow. Первое — Entities или сущности. Например, марки машин, города или названия пиццы. В настройках сущности мы указываем примеры сущности и ее синонимы. Алгоритм будет пытаться зацепиться за сущность на уровне основ слов. В случае успеха Google пришлет ее на сервер в качестве аргумента.
Второе понятие — Intents или действия — категории, по которым DialogFlow будет классифицировать команды пользователя. Мы добавляем примеры команд, по которым будет определяться интент. В примерах команд лучше использовать примеры сущностей, которые были добавлены на первом шаге. Так алгоритму будет проще научиться вычленять нужные нам аргументы. Главная фишка DialogFlow — на основе введенных шаблонов нейросети Google тренируются и генерируют новые ключевые фразы. Чем больше шаблонов мы добавим, тем корректнее будет определяться интент. Не забудем добавить идентификационное имя для интента, которым мы будем дальше пользоваться в коде.
У интента есть имя, есть список параметров. Не хватает возвращаемого значения. В настройках можно добавить статические ответы. Динамические ответы — зона ответственности js кода. Далее я буду расхваливать вторую вещь, которая делает подход гугла еще круче — официальная библиотека к node.js. Она лишает радости парсить json и заниматься маршрутизацией интентов через длинные if’ы или switch-case блоки.
Инициализируем объект DialogflowApp, в конструктор передадим request и response. Через метод getArgument() мы получаем сущность из команды, с помощью tell() передаем ответ помощника, через handleRequest() настраиваем маршрутизацию в зависимости от интента.
DialogflowApp сделает всю грязную работу за нас. Нам остается только подготовить данные для вывода. А теперь представьте, как это облегчает работу, когда нам нужно настроить заказ пиццы, вывод меню или статуса заказа, поиск ближайшей пиццерии и еще пару команд. Сколько человеко-часов экономим этой технологией!
Первичное тестирование ответов мы можем провести сразу в личном кабинете.
Для более скрупулезного тестирования есть симулятор или девайс с Google now.
Ответ в Google Assistant может состоять не только из текста, но и разных ui элементов: кнопки, карточки, карусели, списки.
На этом стоит остановиться. Дальнейшие тонкости технологии — материал на несколько статей. Те основы, которые были рассказаны сейчас, уже дают огромную пользу в построении своего приложения для Google Assistant. Закон Парето в действии.
Apple SiriKit. Кратко о том, почему Siri отстает
Если Диалоги — это базовая комплектация автомобиля, а Actions on Google — полная комплектация, то SiriKit — это метро с двумя станциями на всю Москву.
Две особенности, которые делают подход Apple не таким, как все — привязанность к основному приложение и обязательное соответствие одному из сценариев использования, прописанных Apple, то есть полное отсутствие кастомизации разговора. По первому пункту все понятно — без основного приложение на девайсе не будет диалога в Siri. Ваш диалог лишь дополнение к приложению.
Второй пункт является главным недостатком SiriKit. Все диалоги, весь текст уже прописан. Можно только добавить немного синонимов в вокабуляр Siri или сверстать виджет, который появится по запросу. Это единственная свобода, которую дает Apple.
Вам повезло, если вы хотите сделать что-то похожее на команды из скриншота ниже. Нам не повезло.
Если на WWDC 2018 Apple не поменяет кардинально подход к кастомным диалогам, то тогда Siri так и останется внизу топа. Голосовые помощники — это операционные системы будущего. Систему делают крутой приложения. Когда их нельзя нормально сделать, система проигрывает. Именно из-за этого IOS в топе. Именно из-за этого Siri отстает в гонке.
Экспертное мнение. Про Amazon Alexa, продакшн и будущее.
Думаю, что голосовая разработка на нашем рынке в ближайшее время перейдет из развлекательной штуки во что-то серьезное, в продакшн. Точкой отсчета, скорее всего, будет официальный анонс русскоязычного Google Assistant, то есть Google I/O 2018. Надо морально подготовиться и поучиться у западных коллег. Расспросил нашего друга, Максима Кокоша, Team Lead-а из Omnigon. Он работал с Assistant и Alexa.
Максим Кокош, Team Lead Omnigon
Расскажи в общих словах, что ты разрабатывал?
Я занимался доработкой одного скилла для Alexa и портированием другого c Alexa на Actions on Google при использовании DialogFlow. Причем в очень сжатые сроки, неделя была на портирование, неделя на доработку Alexa скила.
Про Амазоновский проект мы ничего не знаем.
Вот ты в статье написал про Алису, Siri, Google Assistant, а про Alexa нет. Это как сравнивать Android и Symbian и забыть про iOS.
Alexa — главный конкурент Google. Как показывает продакшн, пользователей у нее значительно больше. Комьюнити сильно больше. Документации больше. Да и самих скиллов тоже заметно больше.
Кстати, я бы не стал подход Алисы называть автомобилем. Двухколесная повозка на ослиной тяге, это максимум. По сравнению с Google Actions и Alexa, там все совсем плохо. Парсить руками string’и в 2018 году звучит как дикость.
Как ты думаешь, почему аудитория у Alexa намного больше?
Мне кажется, это из-за того, что Google позже вступил в игру. Очень мало вкладывается в рекламу. Хотя судя по тому, что ассистент есть или может быть установлен почти на каждом Android устройстве, они могли бы стать популярней.
В чем особенности Alexa?
В Alexа удобно работать с состоянием в рамках сессии. Например, ты просишь включить свет в ванной. Получается Intent «Включить свет», а entity — ванная. Затем ты говоришь: «Выключить». И вот тут нам пригодится контекст внутри сессии. Во время обработки интента мы можем выставить состояние «bathroom» и использовать его при получении следующих интентов. У Google есть Follow-up интенты, отвечающие аналогичным целям, но они не такие гибкие.
У Alexa явно говорится, как установить скиллы. Это знакомый пользователю подход — магазин скиллов. У Google скилы ставятся автоматически.
Review процесс очень строгий на обеих платформах. Ревьюверы следят, чтобы каждый response заканчивался точкой, чтобы взаимодействие с пользователем выглядело натурально, для этого у каждой платформы есть свои гайдлайны, чтобы не было грамматических ошибок, даже в описании, а текста там очень много. Ревью от Amazon обычно занимало 2-3 дня, в Google справились за 1 день.
Сама разработка Google Actions показалось более простой: захостил на Firebase action, подключил его в 2 клика, и вот у тебя уже все готово к разработке. Если ты хочешь делать запросы наружу, нужно платить. Если будешь обращаться только к сервисам Google, то можно и бесплатно. AWS, ввиду большей загруженности, выглядит запутанней.
У Google можно ботов делать при помощи Google таблиц, функциональность весьма ограничена, однако позволяет писать ботов без скилов программирования и подойдет для мелких задач.
DialogFlow также в теории позволяет в один клик подключать твоих ботов к слаку, Telegram, Cortana и тому подобному. Там куча интеграций, правда коллаборация с Alexa не работает.
В принципе, имея знания об Actions on Google, можешь работать с Alexa.
Мы с тобой люди из мобильной сферы. Отличаются ли бизнес-процессы мобильной и голосовой разработки?
На мой вкус, процесс весьма похож, интенты можно рассматривать как экраны, entity — как данные в них, также есть система состояний. С точки зрения тестирования тоже все похоже: требуется корректная обработка случаев с потерей интернета, неожиданных респонсов от API и т.д.
Может ли разработка диалогов стать такой же популярной, как сейчас мобильная разработка?
Мне кажется, ассистенты не смогут достичь популярности мобильных приложений, ибо не все сценарии можно переложить на устное взаимодействие + с экрана информация воспринимается намного быстрее, чем на слух. Также не всегда у пользователя есть возможность устно вести диалог с ассистентом, особенно когда это касается sensitive данных. Голосовые ассистенты могут быть достаточно утилитарны, например, «закажи такси» или «закажи пиццу», но надолго увлечь пользователя вряд ли удастся. Это, скорее, эффектное дополнение к дому или автомобилю.
Какое будущее у голосовых ассистентов?
Голосовые ассистенты займут свою нишу и достаточно большую. И станут таким же обычным делом, как Android Auto и CarPlay среди машин. Уже продано 20 миллионов Amazon Echo девайсов и 4.6 миллиона Google Home девайсов. Не стоит забывать, что множество Android-телефонов оборудованы Google Assistant.
Макс, спасибо большое за подробные ответы.
Надеюсь, они хоть как-то помогут. 🙂
Что нас ждет впереди
Всем диалоговым платформам есть куда расти, потолок еще далеко. Давно не было интриги в битве за наш голос.
Источник