Как работает Android, часть 1
В этой серии статей я расскажу о внутреннем устройстве Android — о процессе загрузки, о содержимом файловой системы, о Binder и Android Runtime, о том, из чего состоят, как устанавливаются, запускаются, работают и взаимодействуют между собой приложения, об Android Framework, и о том, как в Android обеспечивается безопасность.
Немного фактов
Android — самая популярная операционная система и платформа для приложений, насчитывающая больше двух миллиардов активных пользователей. На ней работают совершенно разные устройства, от «интернета вещей» и умных часов до телевизоров, ноутбуков и автомобилей, но чаще всего Android используют на смартфонах и планшетах.
Android — свободный и открытый проект. Большинство исходного кода (который можно найти на https://source.android.com) распространяется под свободной лицензией Apache 2.0.
Компания Android Inc. была основана в 2003 году и в 2005 году куплена Google. Публичная бета Android вышла в 2007 году, а первая стабильная версия — в 2008, с тех пор мажорные релизы выходят примерно раз в год. Последняя на момент написания стабильная версия Android — 7.1.2 Nougat.
Android is Linux
По поводу такой формулировки было много споров, так что сразу поясню, что именно я имею в виду под этой фразой: Android основан на ядре Linux, но значительно отличается от большинства других Linux-систем.
Среди исходной команды разработчиков Android был Robert Love, один из самых известных разработчиков ядра Linux, да и сейчас компания Google остаётся одним из самых активных контрибьюторов в ядро, поэтому неудивительно, что Android построен на основе Linux.
Как и в других Linux-системах, ядро Linux обеспечивает такие низкоуровневые вещи, как управление памятью, защиту данных, поддержку мультипроцессности и многопоточности. Но — за несколькими исключениями — вы не найдёте в Android других привычных компонентов GNU/Linux-систем: здесь нет ничего от проекта GNU, не используется X.Org, ни даже systemd. Все эти компоненты заменены аналогами, более приспособленными для использования в условиях ограниченной памяти, низкой скорости процессора и минимального потребления энергии — таким образом, Android больше похож на встраиваемую (embedded) Linux-систему, чем на GNU/Linux.
Другая причина того, что в Android не используется софт от GNU — известная политика «no GPL in userspace»:
We are sometimes asked why Apache Software License 2.0 is the preferred license for Android. For userspace (that is, non-kernel) software, we do in fact prefer ASL 2.0 (and similar licenses like BSD, MIT, etc.) over other licenses such as LGPL.
Android is about freedom and choice. The purpose of Android is promote openness in the mobile world, and we don’t believe it’s possible to predict or dictate all the uses to which people will want to put our software. So, while we encourage everyone to make devices that are open and modifiable, we don’t believe it is our place to force them to do so. Using LGPL libraries would often force them to do just that.
Само ядро Linux в Android тоже немного модифицировано: было добавлено несколько небольших компонентов, в том числе ashmem (anonymous shared memory), Binder driver (часть большого и важного фреймворка Binder, о котором я расскажу ниже), wakelocks (управление спящим режимом) и low memory killer. Исходно они представляли собой патчи к ядру, но их код был довольно быстро добавлен назад в upstream-ядро. Тем не менее, вы не найдёте их в «обычном линуксе»: большинство других дистрибутивов отключают эти компоненты при сборке.
В качестве libc (стандартной библиотеки языка C) в Android используется не GNU C library (glibc), а собственная минималистичная реализация под названием bionic, оптимизированная для встраиваемых (embedded) систем — она значительно быстрее, меньше и менее требовательна к памяти, чем glibc, которая обросла множеством слоёв совместимости.
В Android есть оболочка командной строки (shell) и множество стандартных для Unix-подобных систем команд/программ. Во встраиваемых системах для этого обычно используется пакет Busybox, реализующий функциональность многих команд в одном исполняемом файле; в Android используется его аналог под названием Toybox. Как и в «обычных» дистрибутивах Linux (и в отличие от встраиваемых систем), основным способом взаимодействия с системой является графический интерфейс, а не командная строка. Тем не менее, «добраться» до командной строки очень просто — достаточно запустить приложение-эмулятор терминала. По умолчанию он обычно не установлен, но его легко, например, скачать из Play Store (Terminal Emulator for Android, Material Terminal, Termux). Во многих «продвинутых» дистрибутивах Android — таких, как LineageOS (бывший CyanogenMod) — эмулятор терминала предустановлен.
Второй вариант — подключиться к Android-устройству с компьютера через Android Debug Bridge (adb). Это очень похоже на подключение через SSH:
Из других знакомых компонентов в Android используются библиотека FreeType (для отображения текста), графические API OpenGL ES, EGL и Vulkan, а также легковесная СУБД SQLite.
Кроме того, раньше для реализации WebView использовался браузерный движок WebKit, но начиная с версии 7.0 вместо этого используется установленное приложение Chrome (или другое; список приложений, которым разрешено выступать в качестве WebView provider, конфигурируется на этапе компиляции системы). Внутри себя Chrome тоже использует основанный на WebKit движок Blink, но в отличие от системной библиотеки, Chrome обновляется через Play Store — таким образом, все приложения, использующие WebView, автоматически получают последние улучшения и исправления уязвимостей.
It’s all about apps
Как легко заметить, использование Android принципиально отличается от использования «обычного Linux» — вам не нужно открывать и закрывать приложения, вы просто переключаетесь между ними, как будто все приложения запущены всегда. Действительно, одна из уникальных особенностей Android — в том, что приложения не контролируют напрямую процесс, в котором они запущены. Давайте поговорим об этом подробнее.
Основная единица в Unix-подобных системах — процесс. И низкоуровневые системные сервисы, и отдельные команды в shell’е, и графические приложения — это процессы. В большинстве случаев процесс представляет собой чёрный ящик для остальной системы — другие компоненты системы не знают и не заботятся о его состоянии. Процесс начинает выполняться с вызова функции main() (на самом деле _start ), и дальше реализует какую-то свою логику, взаимодействуя с остальной системой через системные вызовы и простейшее межпроцессное общение (IPC).
Поскольку Android тоже Unix-подобен, всё это верно и для него, но в то время как низкоуровневые части — на уровне Unix — оперируют понятием процесса, на более высоком уровне — уровне Android Framework — основной единицей является приложение. Приложение — не чёрный ящик: оно состоит из отдельных компонентов, хорошо известных остальной системе.
У приложений Android нет функции main() , нет одной точки входа. Вообще, Android максимально абстрагирует понятие приложение запущено как от пользователя, так и от разработчика. Конечно, процесс приложения нужно запускать и останавливать, но Android делает это автоматически (подробнее я расскажу об этом в следующих статьях). Разработчику предлагается реализовать несколько отдельных компонентов, каждый из которых обладает своим собственным жизненным циклом.
In Android, however, we explicitly decided we were not going to have a main() function, because we needed to give the platform more control over how an app runs. In particular, we wanted to build a system where the user never needed to think about starting and stopping apps, but rather the system took care of this for them… so the system had to have some more information about what is going on inside of each app, and be able to launch apps in various well-defined ways whenever it is needed even if it currently isn’t running.
Для реализации такой системы нужно, чтобы приложения имели возможность общатся друг с другом и с системными сервисами — другими словами, нужен очень продвинутый и быстрый механизм IPC.
Этот механизм — Binder.
Binder
Binder — это платформа для быстрого, удобного и объектно-ориентированного межпроцессного взаимодействия.
Разработка Binder началась в Be Inc. (для BeOS), затем он был портирован на Linux и открыт. Основной разработчик Binder, Dianne Hackborn, была и остаётся одним из основных разработчиков Android. За время разработки Android Binder был полностью переписан.
Binder работает не поверх System V IPC (которое даже не поддерживается в bionic), а использует свой небольшой модуль ядра, взаимодействие с которым из userspace происходит через системные вызовы (в основном ioctl ) на «виртуальном устройстве» /dev/binder . Со стороны userspace низкоуровневая работа с Binder, в том числе взаимодействие с /dev/binder и marshalling/unmarshalling данных, реализована в библиотеке libbinder.
Низкоуровневые части Binder оперируют в терминах объектов, которые могут пересылаться между процессами. При этом используется подсчёт ссылок (reference-counting) для автоматического освобождения неиспользуемых общих ресурсов и уведомление о завершении удалённого процесса (link-to-death) для освобождения ресурсов внутри процесса.
Высокоуровневые части Binder работают в терминах интерфейсов, сервисов и прокси-объектов. Описание интерфейса, предоставляемого программой другим программам, записывается на специальном языке AIDL (Android Interface Definition Language), внешне очень похожем на объявление интерфейсов в Java. По этому описанию автоматически генерируется настоящий Java-интерфейс, который потом может использоваться и клиентами, и самим сервисом. Кроме того, по .aidl -файлу автоматически генерируются два специальных класса: Proxy (для использования со стороны клиента) и Stub (со стороны сервиса), реализующие этот интерфейс.
Для Java-кода в процессе-клиенте прокси-объект выглядит как обычный Java-объект, который реализует наш интерфейс, и этот код может просто вызывать его методы. При этом сгенерированная реализация прокси-объекта автоматически сериализует переданные аргументы, общается с процессом-сервисом через libbinder, десериализует переданный назад результат вызова и возвращает его из Java-метода.
Stub работает наоборот: он принимает входящие вызовы через libbinder, десериализует аргументы, вызывает абстрактную реализацию метода, сериализует возвращаемое значение и передаёт его процессу-клиенту. Соответственно, для реализации сервиса программисту достаточно реализовать абстрактные методы в унаследованном от Stub классе.
Такая реализация Binder на уровне Java позволяет большинству кода использовать прокси-объект, вообще не задумываясь о том, что его функциональность реализована в другом процессе. Для обеспечения полной прозрачности Binder поддерживает вложенные и рекурсивные межпроцессные вызовы. Более того, использование Binder со стороны клиента выглядит совершенно одинаково, независимо от того, расположена ли реализация используемого сервиса в том же или в отдельном процессе.
Для того, чтобы разные процессы могли «найти» сервисы друг друга, в Android есть специальный сервис ServiceManager, который хранит, регистрирует и выдаёт токены всех остальных сервисов.
Binder широко используется в Android для реализации системных сервисов (например, пакетного менеджера и буфера обмена), но детали этого скрыты от разработчика приложений высокоуровневыми классами в Android Framework, такими как Activity, Intent и Context. Приложения могут также использовать Binder для предоставления друг другу собственных сервисов — например, приложение Google Play Services вообще не имеет собственного графического интерфейса для пользователя, но предоставляет разработчикам других приложений возможность пользоваться сервисами Google Play.
Подробнее про Binder можно узнать по этим ссылкам:
В следующей статье я расскажу о некоторых идеях, на которых построены высокоуровневые части Android, о нескольких его предшественниках и о базовых механизмах обеспечения безопасности.
Источник
ПРОграммирование под Android
Страницы
21 февраля 2014 г.
Архитектура операционной системы Андроид
Классический рисунок представляющий архитектуру ОС Android:
Если кому-то сложно с английским, то на всякий случай то же самое по на русском:
Сразу приведу оригинальное видео с канала Android Developers на Youtube, где все авторитетно рассказывается и показывается, правда на враждебном нам буржуйском языке. Я использовал это видео, чтобы описать некоторые пункты архитектуры, описания которых не нашел в сети на русском языке.
Если представить компонентную модель Android в виде некоторой иерархии, то в самом низу, как самая фундаментальная и базовая составляющая, будет располагаться ядро операционной системы (Linux Kernel).
Часто компонентную модель ещё называют программным стеком. Действительно, это определение тут уместно, потому что речь идет о наборе программных продуктов, которые работают вместе для получения итогового результата. Действия в этой модели выполняются последовательно, и уровни иерархии также последовательно взаимодействуют между собой.
LINUX KERNEL (ЯДРО ЛИНУКС)
Как известно, Андроид основан на несколько урезанном ядре ОС Linux и поэтому на этом уровне мы можем видеть именно его (версии 2.6.x). Оно обеспечивает функционирование системы и отвечает за безопасность, управление памятью, энергосистемой и процессами, а также предоставляет сетевой стек и модель драйверов. Ядро также действует как уровень абстракции между аппаратным обеспечением и программным стеком.
LIBRARIES (БИБЛИОТЕКИ)
«Выше» ядра, как программное обеспечение промежуточного слоя, лежит набор библиотек (Libraries), предназначенный для обеспечения важнейшего базового функционала для приложений. То есть именно этот уровень отвечает за предоставление реализованных алгоритмов для вышележащих уровней, поддержку файловых форматов, осуществление кодирования и декодирования информации (в пример можно привести мультимедийные кодеки), отрисовку графики и многое другое. Библиотеки реализованы на C/C++ и скомпилированы под конкретное аппаратное обеспечение устройства, вместе с которым они и поставляются производителем в предустановленном виде.
Краткое описание некоторых из них:
- Surface Manager – в ОС Android используется композитный менеджер окон, наподобие Compiz (Linux), но более упрощенный. Вместо того чтобы производить отрисовку графики напрямую в буфер дисплея, система посылает поступающие команды отрисовки в закадровый буфер, где они накапливаются вместе с другими, составляя некую композицию, а потом выводятся пользователю на экран. Это позволяет системе создавать интересные бесшовные эффекты, прозрачность окон и плавные переходы.
- Media Framework – библиотеки, реализованные на базе PacketVideo OpenCORE. С их помощью система может осуществлять запись и воспроизведение аудио и видео контента, а также вывод статических изображений. Поддерживаются многие популярные форматы, включая MPEG4, H.264, MP3, AAC, AMR, JPG и PNG.
- SQLite – легковесная и производительная реляционная СУБД, используемая в Android в качестве основного движка для работы с базами данных, используемыми приложениями для хранения информации.
- OpenGL | ES –
3D библиотеки — используются для высокооптимизированной отрисовки 3D-графики, при возможности используют аппаратное ускорение. Их реализации строятся на основе API OpenGL ES 1.0.
На этом же уровне располагается Android Runtime – среда выполнения. Ключевыми её составляющими являются набор библиотек ядра и виртуальная машина Dalvik. Библиотеки обеспечивают большую часть низкоуровневой функциональности, доступной библиотекам ядра языка Java.
ANDROID RUNTIME (СРЕДА ВЫПОЛНЕНИЯ АНДРОИД)
На этом же уровне располагается Android Runtime – среда выполнения. Ключевыми её составляющими являются набор библиотек ядра (Core Libraries) и виртуальная машина Dalvik. Библиотеки обеспечивают большую часть низкоуровневой функциональности, доступной библиотекам ядра языка Java.
Каждое приложение в ОС Android запускается в собственном экземпляре виртуальной машины Dalvik. Таким образом, все работающие процессы изолированы от операционной системы и друг от друга. И вообще, архитектура Android Runtime такова, что работа программ осуществляется строго в рамках окружения виртуальной машины. Благодаря этому осуществляется защита ядра операционной системы от возможного вреда со стороны других её составляющих. Поэтому код с ошибками или вредоносное ПО не смогут испортить Android и устройство на его базе, когда сработают. Такая защитная функция, наряду с выполнением программного кода, является одной из ключевых для надстройки Android Runtime.
Dalvik полагается на ядро Linux для выполнения основных системных низкоуровневых функций, таких как, безопасность, потоки, управление процессами и памятью. Вы можете также писать приложения на C/C++, которые будут работать непосредственно на базовом уровне ОС Linux. Хотя такая возможность и существует, необходимости в этом нет никакой.
Если для приложения важны присущие C/C++ скорость и эффективность работы, Android предоставляет доступ к нативной среде разработки (NDK – Native Development Kit). Она позволяет разрабатывать приложения на C/C++ с использованием библиотек libc и libm, а также обеспечивает нативный доступ к OpenGL.
Доступ к устройствам и системным службам Android осуществляется через виртуальную машину Dalvik, которая считается промежуточным слоем. Благодаря использованию Dalvik для выполнения кода программы разработчики получают в свое распоряжение уровень абстракции, который позволяет им не беспокоиться об особенностях конструкции того или иного устройства.
Виртуальная машина Dalvik может выполнять программы в исполняемом формате DEX (Dalvik Executable). Данный формат оптимизирован для использования минимального объема памяти. Исполняемый файл с расширением .dex создается путем компиляции классов Java с помощью инструмента dx, входящего в состав Android SDK. При использовании IDE Eclipse и плагина ADT (Android Development Tools) компиляция классов Java в формат .dex происходит автоматически.
Как было сказано выше, инструмент dx из Android SDK компилирует приложения, написанные на Java, в исполняемый формат (dex) виртуальной машины Dalvik. Помимо непосредственно исполняемых файлов, в состав приложения Android входят прочие вспомогательные компоненты (такие, например, как файлы с данными и файлы ресурсов). SDK упаковывает все необходимое для установки приложения в файл с расширением .apk (Android package). Весь код в одном файле .apk считается одним приложением и этот файлиспользуется для установки данного приложения на устройствах с ОС Android.
APPLICATION FRAMEWORK (КАРКАС ПРИЛОЖЕНИЙ)
Уровнем выше располагается Application Framework, иногда называемый уровнем каркаса приложений. Именно через каркасы приложений разработчики получают доступ к API, предоставляемым компонентами системы, лежащими ниже уровнем. Кроме того, благодаря архитектуре фреймворка, любому приложению предоставляются уже реализованные возможности других приложений, к которым разрешено получать доступ.
В базовый набор сервисов и систем, лежащих в основе каждого приложения и являющихся частями фреймворка, входят:
- Activity Manager – менеджер Активностей, который управляет жизненными циклами приложений, сохраняет данные об истории работы с Активностями, а также предоставляет систему навигации по ним.
- Package Manager – менеджер пакетов, управляет установленными пакетами на вашем устройстве, отвечает за установку новых и удаление существующих.
- Window Manager – менеджер окон, управляет окнами, и предоставляет для приложений более высокий уровень абстракции библиотеки Surface Manager.
- Telephony Manager – менеджер телефонии, содержит API для взаимодействия с возможностями телефонии (звонки, смс и т.п.)
- Content Providers – контент-провайдеры, управляют данными, которые одни приложения открывают для других, чтобы те могли их использовать для своей работы.
- Resource Manager – менеджер ресурсов, обеспечивает доступ к ресурсам без функциональности (не несущими кода), например, к строковым данным, графике, файлам и другим.
- View System – богатый и расширяемый набор представлений (Views), который может быть использован для создания визуальных компонентов приложений, например, списков, текстовых полей, таблиц, кнопок или даже встроенного web-браузера.
- Location Manager – менеджер местоположения, позволяет приложениям периодически получать обновленные данные о текущем географическом положении устройства.
- Notification Manager – менеджер оповещений, благодаря которому все приложения могут отображать собственные уведомления для пользователя в строке состояния.
Таким образом, благодаря Application Framework, приложения в ОС Android могут получать в своё распоряжение вспомогательный функционал, благодаря чему реализуется принцип многократного использования компонентов приложений и операционной системы. Естественно, в рамках политики безопасности.
Стоит отметить, просто на понятийном уровне, что фреймворк лишь выполняет код, написанный для него, в отличие от библиотек, которые исполняются сами. Ещё одно отличие заключается в том, что фреймворк содержит в себе большое количество библиотек с разной функциональностью и назначением, в то время как библиотеки объединяют в себе наборы функций, близких по логике.
APPLICATIONS (ПРИЛОЖЕНИЯ)
На вершине программного стека Android лежит уровень приложений (Applications). Сюда относится набор базовых приложений, который предустановлен на ОС Android. Например, в него входят браузер, почтовый клиент, программа для отправки SMS, карты, календарь, менеджер контактов и многие другие. Список интегрированных приложений может меняться в зависимости от модели устройства и версии Android. И помимо этого базового набора к уровню приложений относятся в принципе все приложения под платформу Android, в том числе и установленные пользователем.
Считается, что приложения под Android пишутся на языке Java, но нужно отметить, что существует возможность разрабатывать программы и на C/C++ (с помощью Native Development Kit), и на Basic (с помощью Simple) и с использованием других языков. Также можно создавать собственные программы с помощью конструкторов приложений, таких как App Inventor. Словом, возможностей тут много.
Источник