- How to detect Android application open and close: Background and Foreground events.
- Detecting App Lifecycle Evnts
- Backgrounding
- Foregrounding
- Implementing a Foreground and Background Handler
- AppLifecycleHandler
- Update: Using Android Architecture Components
- Android Application Launch explained: from Zygote to your Activity.onCreate()
- When does Android process start?
- Zygote : Spawning new life, new process
- When a user clicks an app icon in Launcher …
- There are three distinct phases of process launch :
- Thanks for reading through 🙌🏼. If you found this post useful, please applaud using the 👏 button and share it through your circles.
- Implement In-app Update In Android
- Make sure every user of your app is on the new version.
- What is In-App Update:
- Flexible Update:
- Benefits:
How to detect Android application open and close: Background and Foreground events.
Dec 17, 2017 · 4 min read
This question seems to come up a lot. Especially if you are just starting out with Android developme n t. It’s simply because there is nothing obvious built into the Android SDK enabling developers to hook into application lifecycle events. Activities and Fragments have all the callbacks under the sun to detect lifecycle change, but there is nothing for the whole application. So how do you detect when a user backgrounds and foregrounds your app. This is an example of how your could detect Application lifecycle events. Feel free to adjust and enhance it to suit your needs, but this idea should be enough to work for most applications with one caveat, it will only work for Android API level 14+(IceCreamSandwich 🍦🥪).
Detecting App Lifecycle Evnts
Backgrounding
ComponentCallbacks2 — Looking at the documentation is not 100% clear on how you would use this. However, take a closer look and you will noticed the onTrimMemory method passes in a flag. These flags are typically to do with the memory availability but the one we care about is TRIM_MEMORY_UI_HIDDEN. By checking if the UI is hidden we can potentially make an assumption that the app is now in the background. Not exactly obvious but it should work.
Foregrounding
ActivityLifecycleCallbacks — We can use this to detect foreground by overriding onActivityResumed and keeping track of the current application state (Foreground/Background).
Implementing a Foreground and Background Handler
First, lets create our interface that will be implemented by a custom Application class. Something as simple as this:
Next, we need a class that is going to implement the ActivityLifecycleCallbacks and ComponentCallbacks2 we discussed earlier. So lets create an AppLifecycleHandler and implement those interfaces and override the methods required. And lets take an instance of the LifecycleDelegate as a constructor parameter so we can call the functions we defined on the interface when we detect a foreground or background event.
We outlined earlier that we could use onTrimMemory and the TRIM_MEMORY_UI_HIDDEN flag to detect background events. So lets do that now.
Add this into the onTrimMemory method callback body
So now we have the background event covered lets handle the foreground event. To do this we are going to use the onActivityResumed. This method gets called every time any Activity in your app is resumed, so this could be called multiple times if you have multiple Activities. What we will do is use a flag to mark it as resumed so subsequent calls are ignored, and then reset the flag when the the app is backgrounded. Lets do that now.
So here we create a Boolean to flag the application is in the foreground. Now, when the application onActivityResumed method is called we check if it is currently in the foreground. If not, we set the appInForeground to true and call back to our lifecycle delegate ( onAppForegrounded()). We just need to make one simple tweak to our onTrimMemory method to make sure that sets appInForeground to false.
Now we are ready to use our AppLifecycleHandler class.
AppLifecycleHandler
Now all we need to do is have our custom Application class implement our LifecycleDelegate interface and register.
And there you go. You now have a way of listening to your app going into the background and foreground.
This is only supposed to be used as an idea to adapt from. The core concept using onTrimMemory and onActivityResumed with some app state should be enough for most applications, but take the concept, expand it and break things out it to fit your requirements. For the sake of brevity I won’t go into how we might do multiple listeners in this post, but with a few tweaks you should easily be able to add a list of handlers or use some kind of observer pattern to dispatch lifecycle events to any number of observers. If anyone would like me to expand on this and provide a multi listener solution let me know in the comments and I can set something up in the example project on GitHub.
Update: Using Android Architecture Components
Thanks to Yurii Hladyshev for the comment.
If you are using the Android Architecture Components library you can use the ProcessLifecycleOwner to set up a listener to the whole application process for onStart and onStop events. To do this, make your application class implement the LifecycleObserver interface and add some annotations for onStop and onStart to your foreground and background methods. Like so:
Источник
Android Application Launch explained: from Zygote to your Activity.onCreate()
Apr 30, 2018 · 6 min read
This article explains how Android launches your application when a user clicks an app icon. The Android system does a lot of heavy lifting behind the curtains to make your launch activity visible to a user. This article covers this process in detail by highlighting the important phases and call sequences.
Android applications are unique in two ways:
- Multiple Entry points: Android apps are composed of different components and they can invoke the components owned by other apps. These components roughly correspond to multiple entry points for any application. Hence, they differ from traditional applications which have a single entry point like main() method.
- Own Little World: Every Android application lives in its own world, it runs in a separate process, it has its own Dalvik VM instance and is assigned a unique user ID.
When does Android process start?
An Android process is started whenever it is required.
Any time a user or some other sys t em component requests a component (could be a service, an activity or an intent receiver) that belongs to your application be executed, the Android system spins off a new process for your app if it’s not already running. Generally processes keep running until killed by the system. Application processes are created on demand and a lot of things happen before you see your application’s launch activity up and running.
Every app runs in its own process: By default, every Android app runs in its own Android process which is nothing but a Linux process which gets one execution thread to start with. For example, when you click on a hyper-link in your e-mail, a web page opens in a browser window. Your mail client and the browser are two separate apps and they run in their two separate individual processes. The click event causes Android platform to launch a new process so that it can instantiate the browser activity in the context of its own process. The same holds good for any other component in an application.
Zygote : Spawning new life, new process
Let’s step back for a moment and have a quick look on system start-up process. Like the most Linux based systems, at startup, the boot loader loads the kernel and starts the init process. The init then spawns the low level Linux processes called “daemons” e.g. android debug daemon, USB daemon etc. These daemons typically handle the low level hardware interfaces including radio interface.
Init process then starts a very interesting process called ‘ Zygote ’.
As the name implies it’s the very beginning for the rest of the Android application. This is the process which initializes a very first instance of Dalvik virtual machine. It also pre-loads all common classes used by Android application framework and various apps installed on a system. It thus prepares itself to be replicated. It stats listening on a socket interface for future requests to spawn off new virtual machines (VM)for managing new application processes. On receiving a new request, it forks itself to create a new process which gets a pre-initialized VM instance.
After zygote, init starts the runtime process.
The zygote then forks to start a well managed process called system server. System server starts all core platform services e.g activity manager service and hardware services in its own context.
At this point the full stack is ready to launch the first app process — Home app which displays the home screen also known as Launcher application.
When a user clicks an app icon in Launcher …
The click event gets translated into startActivity(intent) and it is routed to ActivityManagerService via Binder IPC. The ActvityManagerService performs multiple steps
- The first step is to collect information about the target of the intent object. This is done by using resolveIntent() method on PackageManager object. PackageManager.MATCH_DEFAULT_ONLY and PackageManager.GET_SHARED_LIBRARY_FILES flags are used by default.
- The target information is saved back into the intent object to avoid re-doing this step.
- Next important step is to check if user has enough privileges to invoke the target component of the intent. This is done by calling grantUriPermissionLocked() method.
- If user has enough permissions, ActivityManagerService checks if the target activity requires to be launched in a new task. The task creation depends on Intent flags such as FLAG_ACTIVITY_NEW_TASK and other flags such as FLAG_ACTIVITY_CLEAR_TOP.
- Now, it’s the time to check if the ProcessRecord already exists for the process.If the ProcessRecord is null, the ActivityManager has to create a new process to instantiate the target component.
As you saw above many things happen behind the scene when a user clicks on an icon and a new application gets launched. Here is the full picture :
There are three distinct phases of process launch :
- Process Creation
- Binding Application
- Launching Activity / Starting Service / Invoking intent receiver …
ActivityManagerService creates a new process by invoking startProcessLocked() method which sends arguments to Zygote process over the socket connection. Zygote forks itself and calls ZygoteInit.main() which then instantiates ActivityThread object and returns a process id of a newly created process.
Every process gets one thread by default. The main thread has a Looper instance to handle messages from a message queue and it calls Looper.loop() in its every iteration of run() method. It’s the job of a Looper to pop off the messages from message queue and invoke the corresponding methods to handle them. ActivityThread then starts the message loop by calling Looper.prepareLoop() and Looper.loop() subsequently.
The following sequence captures the call sequence in detail —
The next step is to attach this newly created process to a specific application. This is done by calling bindApplication() on the thread object. This method sends BIND_APPLICATION message to the message queue. This message is retrieved by the Handler object which then invokes handleMessage() method to trigger the message specific action — handleBindApplication(). This method invokes makeApplication() method which loads app specific classes into memory.
This call sequence is depicted in following figure.
Launching an Activity:
After the previous step, the system contains the process responsible for the application with application classes loaded in process’s private memory. The call sequence to launch an activity is common between a newly created process and an existing process.
The actual process of launching starts in realStartActivity() method which calls sheduleLaunchActivity() on the application thread object. This method sends LAUNCH_ACTIVITY message to the message queue. The message is handled by handleLaunchActivity() method as shown below.
Assuming that user clicks on Video Browser application. the call sequence to launch the activity is as shown in the figure.
The Activity starts its managed lifecycle with onCreate() method call. The activity comes to foreground with onRestart() call and starts interacting with the user with onStart() call.
Thanks for reading through 🙌🏼. If you found this post useful, please applaud using the 👏 button and share it through your circles.
This article was initially published as two part series (Part 1 and Part 2) on my blog ./ mult-core-dump in 2010. These articles have been cited in multiple documents including the very famous Introduction to the Android Graphics Pipeline
Источник
Implement In-app Update In Android
Make sure every user of your app is on the new version.
Apr 6, 2020 · 8 min read
In this article, we will learn about the In-app update feature in Android what is all about In-app update, what are the benefits of using the In-app update in your android application. Recently I’ve been working on a product in which I need to Implement an In-app update Why we need to Implement this?.
As a Developer we always want our users to have the updated version of their application but there are a lot of people who actually turned off their auto update from google play store and he/she doesn’t know about any update available or not.
To overcome the problem Google Introduced this feature called In-app update from this feature you can easily prompt the user to update the application and with the user permission you can update the application also while updating the app user can be able to interact with the application. Now the user doesn’t need to go to google play store to check there is any update available or not.
What is In-App Update:
An In-app update was Introduced as a part of the Play Core Library, which actually allows you to prompts the user to update the application when there is any update available on the Google Play Store.
There are two modes of an In-app update.
- Flexible Update
- Immediate Update
Flexible Update:
In Flexible update, the dialog will appear and after the update, the user can interact with the application.
This mode is recommended to use when there is no major change In your application like some features that don’t affect the core functionality of your application.
The update of the application is downloading in the background in the flexible update and after the completion of the downloading, the user will see the dialog in which the user needs to restart the application. The dialog will not automatically show, we need to check and show to the user and we will learn how later.
Benefits:
The major benefit of the flexible update is the user can interact with the application.
Источник