Usb hid stm32 android

STM Урок 34. HAL. USB. HID

Урок 34

HAL. USB. HID

Сегодня мы познакомимся с новым классом для USB – это Human Interface Device или как в народе говорят HID.

Данный класс отличается тем, что здесь мы посылаем короткие сообщения, у нас особой вероятности в том, что наши данные все дойдут, но в данный момент это не совсем и важно. Как правило скорость настраивается так, что данные все равно доходят. Самое главное, чтобы данные доходили быстро, поэтому такие интерфейсы, такие классы используют при программировании таких устройств, как манипулятор мышь, джойстик. клавиатура и им подобных. HID класс может быть как предопределённым, то есть предназначенным для конкретных существующих типов устройств, так и произвольный (custom). Со вторым типом мы немного поработаем на следующим занятием, а сегодня поработаем с первым классом и попробуем эмулировать манипулятор «мышь».

И чтобы с данным классом немного поподробнее разобраться, мы попробуем его реализовать в нашем контроллере STM32F407VG.

Для этого мы сначала конечно же сделаем проект.

Проект создаём из проекта TEST002. Назовем его USB_DEVICE_HID. Запустим проект в Cube, отключим выходные светодиоды, кнопку оставим

Включим USB_OTG_FS в режим Device_Only.

В USB Device выбираем Human Interface Device Class (HID)

В Clock Configuration выберем следующие делители

В Configuration ничего не трогаем.

Сгенерируем и запустим проект.

Соберем проект и настроим программатор на авторезет.

Скачаем файл USB Library User manual.pdf с официального сайта ST Microelectronics и откроем его на странице 39. Там дана функция отправки отчета устройством на host. В качестве хоста у нас будет выступать ПК

Подключим файл в main.c

/* USER CODE END Includes */

Добавим переменные туда же

/* USER CODE BEGIN PV */

#define CURSOR_STEP 1

extern USBD_HandleTypeDef hUsbDeviceFS;

Напишем функцию подготовки буфера для передачи в шину

/* USER CODE BEGIN 0 */

static void GetPointerData(uint8_t *pbuf)

static uint8_t cnt = 0; //счетчик циклов

static uint8_t drct = 0; //направление курсора

Источник

STM32 и USB-HID — это просто

На дворе 2014 год, а для связи микроконтроллеров с ПК самым популярным средством является обычный последовательный порт. С ним легко начать работать, он до примитивности прост в понимании — просто поток байт.
Однако все современные стандарты исключили COM порт из состава ПК и приходится использовать USB-UART переходники, чтобы получить доступ к своему проекту на МК. Не всегда он есть под рукой. Не всегда такой переходник работает стабильно из-за проблем с драйверами. Есть и другие недостатки.
Но каждый раз, когда заходит разговор о том, применять USB или последовательный порт, находится множество поклонников логической простоты UART. И у них есть на то основания. Однако, хорошо ведь иметь альтернативу?

Меня давно просили рассказать как организовать пакетный обмен данными между ПК и МК на примере STM32F103. Я дам готовый рабочий проект и расскажу как его адаптировать для своих нужд. А уж вы сами решите — нужно оно вам или нет.

У нас есть плата с современным недорогим микроконтроллером STM32F103C8 со встроенной аппаратной поддержкой USB, я рассказывал о ней ранее

Я сказал, что у последовательного порта есть и другие недостатки:
-часто COM порт отсутствует в ПК или ноутбуке
-питание устройству нужно подавать отдельно
-даже при наличии COM порта в ПК необходимо согласовывать уровни сигналов: ПК использует интерфейс RS232 с дифференциальными уровнями сигналов +15В и -15В, а микроконтроллеры — TTL уровни (+5В, +3.3В, униполярные).
-часто в системе образуются десятки виртуальных COM портов и найти тот порт, что соответствует вашему устройству может оказаться непросто.
В свою очередь USB с нами уже многие годы и имеет свои преимущества:
-Возможность подачи питания от HOST устройства
-Удобная реализация пакетного обмена
-Возможность одновременного подключения к устройству несколькими программами
-Возможность однозначной идентификации подключенного устройства
-Аппаратная поддержка во многих современных МК, что исключает необходимость переходников
Функционал USB чрезвычайно богатый, но это порождает проблему — разобраться не так просто, как с последовательным интерфейсом. Есть отдельный класс устройств — USB-HID, которые не требуют установки драйверов, специально предназначены для взаимодействия с человеком и различными устройствами ввода-вывода. Идеально для организации обмена данными с МК. Лично мне нравится пакетный режим обмена. Это удобная абстракция. К тому же разбирать пакетные сообщения несколько проще и удобнее, чем работать с простым потоком байт.

Выбор профиля HID

USB-HID — довольно обширный класс устройств, поэтому прежде всего придется выбрать какое именно устройство мы будем создавать.
Мы можем создать эмуляцию клавиатуры, мыши, джойстика и других устройств ввода, а можем создать свое устройство, чтобы не зависеть от довольно жестких рамок стандарта и свободно обмениваться данными с ПК.
Я расскажу как cделать Custom HID device. Это дает максимальную свободу. Чтобы не затягивать статью, постараюсь рассказать максимально кратко — описаний стандарта в сети и без меня много, но лично мне они слабо помогли, когда понадобилось решить конкретную задачу.

Структура проекта

Инициализация USB

В функции Set_System() производится настройка пина подтяжки линии D+ к питанию для программного подключения/отключения устройства от ПК (в нашей плате не используется), настраивается прерывание и инициализируются светодиоды и кнопки для демонстрационного проекта.
В USB_Interrupts_Config() настраиваются прерывания в зависимости от семейства МК (поддерживаются F10x, F37x, L1x).
Функция USB_Init() запускает работу USB модуля. Если временно нужно отключить для отладки работу с USB, просто закомментируйте эту строку.
Далее в бесконечном цикле проверяется, удалось ли сконфигурировать USB модуль при подключении к ПК. Если все сработало верно и устройство успешно подключилось, ПК включен и не находится в режиме энергосбережения, то состояние будет CONFIGURED.
Далее проверяется, была ли закончена предыдущая передача данных в ПК и если да, то готовится к отправке новый пакет в функции RHIDCheckState()

Размер пакета и частота передачи

В комментариях все довольно прозрачно. Обратите внимание на DEVICE_VER_L, DEVICE_VER_H — это константы из usb_desc.h, которые вы можете изменить для идентификации версии своего устройства.

Читайте также:  Андроид заряжается без зарядки

Здесь стоит обратить внимание на константу wMaxPacketSize — она определяет максимальный размер пакета, которым мы будем обмениваться с ПК. Проект так настроен, чтобы при ее изменении менялись и размеры буферов. Но не забывайте, что больше 0x40 по стандарту указывать не стоит. С этой константой будьте осторожны — если передаваемый пакет будет отличаться по размеру — будут проблемы!
Следующая за ним константа с комментарием bInterval — это период опроса устройства в миллисекундах. Для нашего устройства задано 32мс.

Это самый важный дескриптор — он описывает протокол обмена и функционал устройства. Его формирование — не самая простая задача. Если допустить ошибку при формировании дескриптора — устройство перестанет работать. Формат дескриптора очень жесткий. Есть даже специальная утилита HID Descriptor tool. А в корне проекта лежит файл «RHID.hid» с описанным выше дескриптором для редактирования в этой утилите. Но если вы не понимаете, что делаете, лучше не лезть.
Для простоты я сделал две константы:
RPT3_COUNT — размер OUTPUT буфера в байтах для передачи пакета в МК (в примере — 1 байт)
RPT4_COUNT — размер INPUT буфера в байтах для передачи пакета в ПК (в примере — 4 байта)
Размер любого из этих буферов не должен превышать wMaxPacketSize. Меньше — можно.
Кстати, превратить Custom HID в другой HID девайс, например, клавиатуру или джойстик можно фактически только переписав ReportDescriptor и изменив класс и подкласс устройства в дескрипторе конфигурации.

Что такое Report

Хост (ПК) и девайс (МК) обмениваются пакетами данных заранее оговоренной структуры — report. Пакетов может быть весьма много, их можно предусмотреть на все случаи жизни — например пакет с данными о каких-то событиях в устройстве, пакет с данными, которые запрашивал ПК, пакет с командой для МК. Все, что угодно. Но структура всех пакетов должна быть описана в структуре RHID_ReportDescriptor.
ПК и МК различают репорты по ID, который идет первым байтом в пакете.
В нашем примере 4 типа репортов:

  • REPORT_ID = 1 и 2 — команда МК включить/выключить LED1/LED2. Содержит поле размером 1 бит с желаемым состоянием светодиода и поддерживает отправку как методом SET_REPORT так и методом SET_FEATURE (об этом чуть позже).
  • REPORT_ID = 3 — передает один байт в МК. Просто, чтобы показать, как передать данные МК. Мы будем передавать положение ползунка.
  • REPORT_ID = 4 — это репорт для передачи данных ПК. Возвращает информацию о текущем состоянии светодиодов, кнопок (если они есть) и возвращает переданный в репорте с байт, чтобы показать, что данные приняты.

Если вы не до конца разобрались в том, как формировать дескриптор репортов, то просто меняйте константы RPT3_COUNT и RPT4_COUNT, устанавливая нужный размер исходящих и входящих (с точки зрения ПК) пакетов. Остальные репорты можно просто не трогать, они не помешают. Не забывайте, что первым байтом должен быть ID репорта.

Цикл обмена

Массив uint8_t Buffer[RPT4_COUNT+1] определен как размер полезных данных входящего (рассматривается всегда с точки зрения хоста) пакета + байт ID. Это важно — если размер буфера будет отличаться — будут проблемы. Поэтому для изменения размеров буфера редактируйте значение константы в usb_desc.h.
В функции мы собираем данные в пакет, устанавливаем флаг PrevXferComplete = 0, говорящий о том, что данные отправляются и вызываем функциии библиотеки USB_SIL_Write и SetEPTxValid для отправки данных хосту.
Все, на этом передача данных хосту закончена.

С приемом данных немного сложнее — есть два способа послать данные девайсу — один из них заключается в использовании описанных в дескрипторе репорта возможностей устройства (Features), с соответствующими параметрами посредством функции SET_FEAUTRE. Это некоторая абстракция, для красивого управления устройством с кучей функций, чтобы можно было вызывать осмысленные функции, а не просто слать поток байт.
Второй способ — это работа с устройством как с файлом — просто записываем в него пакет как в файл. Этот метод называется SET_REPORT. На деле работает чуть-чуть медленнее.
Наше устройство поддерживает оба метода, о чем мы и сказали хосту в дескрипторе репортов.

Обработка SET_FEATURE

Данные, отправленные методом SET_FEAUTRE обрабатываются в usb_prop.c

Здесь мы проверяем первый байт в репорте и в соответствии с ним обрабатываем остаток пакета — управляем светодиодами или просто берем байт, отправленный нам хостом и кладем в пакет для последующей отправки обратно в функции RHIDCheckState.
Под Report_Buf зарезервировано wMaxPacketSize байт, чтобы влез любой пакет, который нам отправит хост.

Данные, отправленные методом SET_REPORT обрабатываются в usb_endp.c

Здесь почти то же самое, только нужно самостоятельно забрать данные вызовом USB_SIL_Read(EP1_OUT, Receive_Buffer) и в конце сообщить, что мы закончили вызовом SetEPRxStatus(ENDP1, EP_RX_VALID);

Настраивать устройство, передавать и принимать данные в пакетах нужного размера с нужной нам периодичностью мы научились.
Собираем проект и прошиваем в устройство.
Работать, это будет примерно так:

Проект поддерживает взаимодействие с утилитой USB HID Demonstrator от ST Microelectronics.
Страница Device capabilities отображает возможности, описанные в Report Descriptor.
Input/Output transfer позволяет вручную поотправлять данные девайсу и посмотреть пакет, который от него приходит.
Graphic view позволяет управлять светодиодами, чекбоксами Led 1, Led 2, настроив соответствующий им Report ID, а также передавать байт ползунком (ReportID=3)

Также я написал маленькую демо-софтинку, которая автоматически определяет подключение к компу и отключение нашего девайса по его VID и PID, отображает статус — подключено/отключено индикатором рядом с чекбоксом Auto Connect

Радиокнока Send using позволяет выбрать метод отправки данных девайсу.
Report: отображает полученный от девайса пакет побайтно, начиная с ReportID.
Щелкая по светодиодам ниже — управляем светодиодами девайса. Их состояние отображает текущее состояние девайса. Считывается из репорта от девайса.
Перемещая ползунок, мы отправляем Report с и значением, соответствующим позиции ползунка. Девайс вернет это значение в 4 байте репорта.
В выпадающем комбобоксе отображаются HID девайсы, найденные в системе и если найден наш девайс, то отображается его название.

Скачать все, что необходимо, можно на GitHub. В составе:
DT — HID Descriptor tool
tstHID-STM32F103 — проект для EmBlocks
USB HID Demonstrator — утилита от ST Microelectronics
HIDSTM32.exe — моя демо-софтинка на Delphi аналогичного фукнционала, но не требующая настройки

Если остались вопросы — пишите в комментариях. Постараюсь ответить. Я постарался не утопить суть в куче мелочей, чтобы сложилось общее понимание. Остальное уже можно понять, изучая проект. Но если вам нужно быстро сделать свое устройство, а лезть в дебри некогда — все, что вам нужно, я описал.

Читайте также:  Закруглить только угол android

Источник

USB HID интерфейс для STM32 в STM32IDE

Ряд микроконтроллеров STM32 имеют на борту USB интерфейс для связи с компьютерами. Как правило, удобнее всего использовать предоставляемый компаний ST Microelectronics драйвер класса CDC (Communication Device Class ). Он позволяет использовать на стороне компьютера UART через USB и не требует установки драйверов. Со стороны STM32 при этом требуется только поменять операции вывода данных, остальное делается самостоятельно. Причём скорость такого соединения может быть практически любой, поддерживаемой компьютером.

Однако ряд разработок, особенно, когда приходишь в другую компанию, где используется HID Class (Human Interface Device), в случае разработки новой версии устройства требуется поддерживать ранее выбранный интерфейс. Что, собственно, и случилось. Примеры проектов от самой ST, которые они дают при загрузке STM32 Cube MX и IDE, как обычно, дали только минимальное понимание, но не раскрыли, что и как надо делать. Я когда-то разбирался с USB, даже писал собственный драйвер, но это было так давно… Остались только общие воспоминания. Посему пришлось искать дополнительную информацию, чтобы получить стартовую точку.

Первое найденное было видеороликом на youtube в стиле HID за 5 минут 🙂 Автор даёт доступ к своему коду на GitHub. Всё, типа круто, красиво, просто вставляйте к себе и всё будет чудесно. Судя по отзывам под роликом, некоторым этого хватило. Изучив исходники понял, что минимального прозрения не наступило, да и уровень полученной информации мал для того, чтобы решить поставленную задачу. Но закомство с этим материалом было явно полезным. Решение вопроса с использованием кубика (STM32Cube MX) мне лично импонирует больше, чем другие подходы, поскольку позволяет отвлечься от ряда низкоуровневых операций и генерация проекта всегда происходит в одном стиле. Соответственно, изучение этого примера показало, на какие файлы надо обратить внимание, где и что надо поменять или добавить, какие функции использовать для получения и отправки данных именно для нашей выбранной среды программирования.

Следующий поиск оказался весьма удачным. Хабр — известный сайт, на котором можно найти много полезного по разной электронной тематике. Нашлась там и статья STM32 и USB-HID — это просто. Я не являюсь постоянным клиентом Хабра и не знаю автора этой статьи RaJa, но на мой взгляд это очень хорошая статья, описывающая основные положения работы HID интерфейся. Без её прочтения читать дальше здесь бессмысленно, поскольку далее будут, в основном, комментарии для адаптации кода к среде разработки STM32IDE/STM32CubeMX + Atollic TrueStudio. (Далее STM32IDE). Да и столь популярный в 2014 году и реально очень неплохой проект EmBlocks, увы, умер.

Первое, что необходимо решить — как тестировать вновь создаваемое устройство. Лет… дцать назад я использовал для этого анализатор и синтезатор трафика USB — очень полезные, но дорогие игрушки 🙂 Сейчас у меня такой возможности нет, да и должен же быть более простой путь. Тем более для простого стандартного интерфейса без написания собственного драйвера. Авторы обоих рассмотренных выше проектов пошли самы простым для них путём — написание простой программы на известных им языках. Но автор статьи на Хабре сделал очень правильный шаг — он написал свой проект, совместимый с программой ST HID Demonstrator (ссылка есть в статье), позволяющей поуправлять нашим устройством, как графически, так и послать свои данные и посмотреть, что пришло от нашего устройства. Фактически программа может использоваться и в дальнейшем для отладки будущей программы на выбранном микроконтроллере.

Своё ознакомление с проектом для HID я осуществлял с платой STM32L476 Discovery. Плата, вообще говоря, может быть любой, где USB интерфейс микроконтроллера физически подключён к отдельному разъёму USB. Есть у меня и Nucleo 32 с STM32L4, но там один разъём USB тспользуется и для программирования/отладки, и для связи с хостом, что добавляет интриги в интерфейс и может служить источником дополнительных непоняток. Оно нам надо?

Итак, комментарии и дополнения к статье по привязке HID к STM32IDE примерно по тем же шагам, как и в хабровской статье.

Структура проекта

В STM32IDE структура всех проектов задаётся при генерации проекта из среды назначения функциональности пинов и пользователю о том заботиться не надо. В частности, в кубике (что отдельном STM32Cube MX, что в встроенном в STM32IDE) активируем USB, как Device, и добавляем Middleware USB Custom HID.

Рис.1 Выбор USB интерфейса Рис.2 Выбор и первичная настройка Middleware Надо заметить, что несмотря на установку размера буфера в 64 байта, эта величина не вносится по #define. Видимо баг текущей версии кубика. Далее покажем, где надо пофиксить. Указанный резмер дескриптора равный 79 — это значение для данного конретного стартового проекта

Заходим в Clock Configuration. Вполне вероятно, что могут быть проблемы с системными частотами, которые маркируются малиновым цветом.

Рис. 3 Возможные проблемы по установке частот

Если так, нажимаем Resolve Clock Issues и, скорее всего, всё будет настроено на максимальные частоты. Главное — USB Clock будет выставлен на 48 МГц. Надо заметить, что в семействе STM32L4 генератор на 48МГц имеет автоподстройку по SOF (Start Of Frame), что позволяет создавать USB устройства без внешнего кварца/генератора. Если, конечно, остальной дизайн допускает использование некварцованных генераторов. Для других семейств не проверял, поскольку для моего текущего проекта был выбран именно L4. Только надо отметить, что при использовании USB есть некоторая минимальная частота работы микроконтроллера. Я делал прикидку для другого проекта, где надо общаться с хостом и при этом потреблять минимум тока. Задачи простые, не требуют большой скорости и я хотел запустить МК на 8МГц. Оказалось, что меньше 14МГц при подключении USB ставить не могу, RCC не позволяет. Пришлось остановиться на следующем круглом значении 16МГц.

Собственно, настройка аппаратной части USB и выбор файлов, отвечающих за базовую функциональность этого интерфейса на на этом закончены. Вся остальная периферия, находящаяся на выбранной плате настраивается автоматически при её выборе на старте проекта. Сохраняем, генерим проект и переходим к «программированию» в сравнении с описанным на Хабре проектом.

Это страшное слово Descriptor

Стандартные массивы данных для передачи информации хосту, с чем он будет иметь дело. Для интереса можно посмотреть дескрипторы устройства и конфигурации. Сейчас их можно оставить такими, как получились, но в дальнейшем они наверняка потребуют редактирования. Впрочем, не исключено, что они будут генериться по тем параметрам, что ставятся в кубике. Что не может не радовать. А вот Report Descriptor стоит изучить получше — это фактически основное, что придётся в дальнейшем править ручками. Не знаю, откуда RaJa взял его дескрипторы, в нашём случае они генерируются кубиком и располагаются в следующих файлах проекта:

Читайте также:  Security on android applications
Дескриптор от Raja Дескриптор от ST Файл в проекте
RHID_DeviceDescriptor USBD_FS_DeviceDesc usbd_desc.c
RHID_ConfigDescriptor USBD_CUSTOM_HID_CfgFSDesc usbd_customhid.c
RHID_ReportDescriptor CUSTOM_HID_ReportDesc_FS usbd_custom_hid_if.c

Поскольку для простоты сейчас будем работать только с ST HID Demonstrator, то не мудрствуя лукаво я просто скопировал содержимое RHID_ReportDescriptor в соответствующее место моего проекта. Только подставил свои константы на место длины. Надо отметить, что надо точно посчитать количество байтов в этом дескрипторе (в этом проекте 79) и убедиться, что именно это значение стоит в Class Parameters. Не больше и не меньше. Иначе хост не опознает подключённое устройство. Проверено 🙂

Далее заходим в файл usbd_customhid.h и меняем значения CUSTOM_HID_EPIN_SIZE и CUSTOM_HID_EPOUT_SIZE на 0x40U. Честно говоря, немного напрягает то, что ST не даёт альтернатив смене значения по умолчанию 2 на другое значение и далее в коде с использованием этих констант стоит комментарий, что не более 2х байт. Но, с другой стороны, это было рекомендовано в первом найденном описании и, вообще говоря, установка такого значения выглядит достаточно логично. Иначе в чём отличие CustomHID от обычного? Проблема в том, что при регенерации проекта из кубика, что на этапе первичного кода происходит довольно часто, это значение не сохраняется и его надо восстанавливать ручками. Для этого я себе в main вывел строку warning, чтобы не забывать проверить эти константы. Возможно я ошибаюсь, и в дальнейшем всё окажется проще. Но в такой конфигурации работает 🙂

Цикл обмена (пишем/читаем)

Для выдачи данных на хост всё достаточно аналогично описанию на Хабре. Только название функции другое: USBD_CUSTOM_HID_SendReport(). Все остальные реомендации из той статьи подходят по полной программе.

А вот чтение здесь интереснее, чем на Хабре. И на самом деле несколько проще. Обработка принятого массива происходит в usbd_custom_hid_if.c / static int8_t CUSTOM_HID_OutEvent_FS(uint8_t event_idx, uint8_t state).

В этом тестовом проекте я не заморачивался с обработкой входных параметров и следуя своей обычной практике минимальности времени обработки прерываний, просто копирую полученные данные в заранее определённый массив и устанавливаю флаг готовности данных от USB

Ну, а собственно «сбор данных» (нажатие кнопок джойстика) и реакция на полученные от хоста данные в этом прото проекте делаю внутри бесконечного цикла в main.c Всё просто 🙂 В этом прото проекте нет разделения реакции на SET_FEATURE и SET_REPORT, с этим надо будет разобраться далее, в реальном проекте. Компилируем, запускаем, подключаем к хосту и там должен появиться новый CustomHID от STMicroelectronics.

Звпускаем на хосте USB HID Demonstrator. На плате, с которой я запускал этот проект, не имеет органов для работы с Variable Inputs/Outputs, поэтому в разделе Graphic customization были убраны соответствующие назначениями, оставлено 5 кнопок и назначены ID, определённые в проекте: 1, 2 для Output report (входные данные для ST) и 4 для Input Report (выход от ST).

Рис. 4 Настройка демонстратора

Моей задачей для этого проекта было управлять парой светодиодов на плате, что стало работать сразу, как эта программа обнаружила подключенную плату, и включать «лампочки» этой платы при нажатии различных кнопок джойстика на плате, а вот здесь сразу не получилось. При указанных настройках все пять лампочек одновременно зажигались при нажатии на центр джойстика. Остальные кнопки не отображались. При этом, если перейти на Input/Otput transfer, то данные были вполне ожидаемы. Т.е. сам интерфейс работает, но отображение в программе на хосте не отвечает моим запросам. Слава богу ST предоставляетс исходники, а в соседнем кубике сидит программист нашей группы, пишущий в том числе и софт для компьютеров. В общем, он подправил одну функцию и сгенерил исполняемую программу. Всё стало работать, как хотелось. Конечно, можно было бы на каждую кнопку создать свой report с уникальным номером, что исходно и предусмотрено. В этом случае было бы достаточно посылать по одному байту для каждой кнопки, но мой проект предусматривает многобайтный отчёт. Исходник подправленной функции и подправленный исполняемый файл можно скачать по ссылке ниже.

На этом, пожалуй, всё. Если у Вас есть такая же плата 32L476GDISCOVERY, то для начала можно просто скачать мой прото проект, адаптированный для него демонстратор и исходник изменённой функции по этой ссылке. Исходный USB HID Demonstrator скачивается с сайта STM, инсталлируется и его исполняемый файл заменяется моим. Импортируете в STM32IDE мой проект, компилируете и должны получить работающую базу для своих проектов. Если у Вас другая плата, то адаптируете «сбор информации» и включение светодиодов под свою плату.

Для дальнейшей работы обязательно прочтите указанную статью RaJa с Хабра. Она даст понимание того, что и как должно быть сделано для других проектов с USB HID интерфейсом. А ещё лучше начать с неё 🙂

И при выборе класса устройства для Вашего проекта надо учитывать следующее: минимальный период опроса HID устройств — 1ms. И если я правильно помню, это скорее пожелание системе от внешнего устройства. В стандартном HID устройстве за один кадр (frame) передаётся только два байта, т.е. скорость обмена не более 2 кбайт/с. В Custom HID на
Full Speed (12 мбит/с) объём данных отчёта (report) — не более 64 байт, т.е. скорость обмена с Вашим HID не более 64 кбайт/с. Для High Speed (480 мбит/с) — максимальный объём данных 512 байт (512 кбайт/с). Не будь у меня ограничения совместимости с предыдущим софтом, используемым в компании, использовал хотя бы CDC.

У меня изучение статей и адаптация под мои хотелки заняло три дня. Описание заняло больше 🙂 Надеюсь, что у тех, кто воспользуется этой статьёй, аналогичный процесс займёт не более одного дня. Комментируйте, спрашивайте. Что смогу — отвечу. Что не смогу, вместе поищем решение.

Источник

Оцените статью