- Полный список
- LiveData
- Очистка ресурсов
- Context
- Передача объектов в конструктор модели
- Передача данных между фрагментами
- onSavedInstanceState
- RxJava
- MVVM на Android с компонентами архитектуры + библиотека Koin
- Введение
- Представление
- Модель представления
- Модель
- Как реализовать паттерн MVVM
- Сценарий приложения и реализация модели
- View-Model
- Представление
- Конкретизация объектов и внедрение зависимостей
- Заключение
Полный список
В этом уроке рассмотрим, как использовать ViewModel. Как сохранять данные при повороте экрана. Как передать Context в ViewModel. Как передать свои данные в конструктор модели с помощью фабрики. Как передать данные между фрагментами. Что использовать: ViewModel или onSavedInstanceState.
Полный список уроков курса:
ViewModel — класс, позволяющий Activity и фрагментам сохранять необходимые им объекты живыми при повороте экрана.
Давайте сразу посмотрим пример и по ходу дела разберем нюансы и прочую теорию. Как подключить библиотеку к проекту, вы можете посмотреть в начале Урока 2.
Создаем свой класс, наследующий ViewModel
Пока оставим его пустым.
Чтобы добраться до него в Activity, нужен следующий код:
В метод ViewModelProviders.of передаем Activity. Тем самым мы получим доступ к провайдеру, который хранит все ViewModel для этого Activity.
Методом )» target=»_blank» rel=»noopener noreferrer»>get запрашиваем у этого провайдера конкретную модель по имени класса — MyViewModel. Если провайдер еще не создавал такой объект ранее, то он его создает и возвращает нам. И пока Activity окончательно не будет закрыто, при всех последующих вызовах метода get мы будем получать этот же самый объект MyViewModel.
Соответственно, при поворотах экрана, Activity будет пересоздаваться, а объект MyViewModel будет спокойно себе жить в провайдере. И Activity после пересоздания сможет получить этот объект обратно и продолжить работу, как будто ничего не произошло.
Отсюда следует важный вывод. Не храните в ViewModel ссылки на Activity, фрагменты, View и пр. Это может привести к утечкам памяти.
На картинке время жизни (оно же scope) модели это выглядит так:
Модель жива, пока Activity не закроется окончательно.
У метода get, который возвращает нам модель из провайдера, есть еще такой вариант вызова:
Т.е. вы можете создавать несколько моделей одного и того же класса, но использовать разные текстовые ключи для их хранения в провайдере.
LiveData
LiveData очень удобно использовать с ViewModel. В прошлых уроках я для работы с LiveData использовал синглтон, но теперь мы перейдем на ViewModel.
Рассмотрим несложный пример асинхронной однократной загрузки каких-либо данных:
Основной метод здесь — это getData. Когда Activity захочет получить данные, оно вызовет именно этот метод. Мы проверяем, создан ли уже MutableLiveData. Если нет, значит этот метод вызывается первый раз. В этом случае создаем MutableLiveData и стартуем асинхронный процесс получения данных методом loadData. Далее возвращаем LiveData.
В методе loadData происходит асинхронное получение данных из какого-нибудь репозитория. Как только данные будут получены (в методе onLoad), мы передаем их в MutableLiveData.
Метод loadData должен быть асинхронным, потому что он вызывается из метода getData, а getData в свою очередь вызывается из Activity и все это происходит в UI потоке. Если loadData начнет грузить данные синхронно, то он заблокирует UI поток.
Код в Activity выглядит так:
Получаем от провайдера модель. От модели получаем LiveData, на который подписываемся и ждем данные.
В этом примере ViewModel нужен, чтобы сохранить процесс получения данных при повороте экрана. А LiveData — для удобного асинхронного получения данных.
Т.е. это будет выглядеть так:
— Activity вызывает метод модели getData
— модель создает MutableLiveData и стартует асинхронный процесс получения данных от репозитория
— Activity подписывается на полученный от модели LiveData и ждет данные
— происходит поворот экрана
— на модели этот поворот никак не сказывается, она спокойно сидит в провайдере и ждет ответ от репозитория
— Activity пересоздается, получает ту же самую модель от провайдера, получает тот же самый LiveData от модели и подписывается на него и ждет данные
— репозиторий возвращает данные, модель передает их в MutableLiveData
— Activity получает данные данные от LiveData
Если репозиторий вдруг пришлет ответ в тот момент, когда Activity будет пересоздаваться, то Activity получит этот ответ, как только подпишется на LiveData.
Если ваш репозиторий сам умеет возвращать LiveData, то все значительно упрощается. Вы просто отдаете этот LiveData в Activity и оно подписывается.
Очистка ресурсов
Когда Activity окончательно закрывается, провайдер удаляет ViewModel, предварительно вызвав его метод onCleared
В этом методе вы сможете выполнить все необходимые операции по освобождению ресурсов, закрытию соединений/потоков и т.п.
Context
Не стоит передавать Activity в модель в качестве Context. Это может привести к утечкам памяти.
Если вам в модели понадобился объект Context, то вы можете наследовать не ViewModel, а AndroidViewModel.
При создании этой модели, провайдер передаст ей в конструктор класс Application, который является Context. Вы сможете до него добраться методом getApplication.
Код получения этой модели в Activity останется тем же самым.
Передача объектов в конструктор модели
Бывает необходимость передать модели какие-либо данные при создании. Модель создается провайдером и у нас есть возможность вмешаться в этот процесс. Для этого используется фабрика. Мы учим эту фабрику создавать модель так, как нам нужно. И провайдер воспользуется этой фабрикой, когда ему понадобится создать объект.
Рассмотрим пример. У нас есть такая модель
Ей нужен long при создании.
В конструктор передаем long, который нам необходимо будет передать в модель.
В методе )» target=»_blank» rel=»noopener noreferrer»>create фабрика получит от провайдера на вход класс модели, которую необходимо создать. Проверяем, что это класс MyViewModel, сами создаем модель и передаем туда long.
В Activity код получения модели будет выглядеть так:
Мы создаем новую фабрику с нужными нам данными и передаем ее в метод of. При вызове метода get провайдер использует фабрику для создания модели, т.е. выполнится наш код создания модели и передачи в нее данных.
Передача данных между фрагментами
ViewModel может быть использована для передачи данных между фрагментами, которые находятся в одном Activity. В документации есть отличный пример кода:
SharedViewModel — модель с двумя методами: один позволяет поместить данные в LiveData, другой — позволяет получить этот LiveData. Соответственно, если два фрагмента будут иметь доступ к этой модели, то один сможет помещать данные в его LiveData, а другой — подпишется и будет получать эти данные. Таким образом два фрагмента будут обмениваться данными ничего не зная друг о друге.
Чтобы два фрагмента могли работать с одной и той же моделью, они могут использовать общее Activity. Код получения модели в фрагментах выглядит так:
Для обоих фрагментов getActivity вернет одно и то же Activity. Метод ViewModelProviders.of вернет провайдера этого Activity. Далее методом get получаем модель.
Фрагмент MasterFragment помещает данные в LiveData. А DetailFragment — подписывается и получает данные.
onSavedInstanceState
Чем ViewModel отличается от onSavedInstanceState. Для каких данных какой из них лучше использовать. Кажется, что если есть ViewModel, который жив все время, пока не закрыто Activity, то можно забыть про onSavedInstanceState. Но это не так.
Давайте в качестве примера рассмотрим Activity, которое отображает список каких-то данных и может выполнять поиск по ним. Пользователь открывает Activity и выполняет поиск. Activity отображает результаты этого поиска. Пользователь сворачивает приложение. Когда он его снова откроет, он ожидает, что там все останется в этом же состоянии.
Но тут внезапно системе не хватает памяти и она убивает это свернутое приложение. Когда пользователь снова запустит его, Activity ничего не будет знать о поиске, и просто покажет все данные. В этом случае ViewModel нам никак не поможет, потому что модель будет убита вместе с приложением. А вот onSavedInstanceState будет выполнен. В нем мы сможем сохранить поисковый запрос, и при последующем запуске получить его из объекта savedInstanceState и выполнить поиск. В результате пользователь увидит тот же экран, который был, когда приложение было свернуто.
ViewModel — здесь удобно держать все данные, которые нужны вам для формирования экрана. Они будут жить при поворотах экрана, но умрут, когда приложение будет убито системой.
onSavedInstanceState — здесь нужно хранить тот минимум данных, который понадобится вам для восстановления состояния экрана и данных в ViewModel после экстренного закрытия Activity системой. Это может быть поисковый запрос, ID и т.п.
Соответственно, когда вы достаете данные из savedInstanceState и предлагаете их модели, это может быть в двух случаях:
1) Был обычный поворот экрана. В этом случае ваша модель должна понять, что ей эти данные не нужны, потому что при повороте экрана модель ничего не потеряла. И уж точно модель не должна заново делать запросы в БД, на сервер и т.п.
2) Приложение было убито, и теперь запущено заново. В этом случае модель берет данные из savedInstanceState и использует их, чтобы восстановить свои данные. Например, берет ID и идет в БД за полными данными.
RxJava
В начале этого урока мы рассмотрели пример работы ViewModel и LiveData. Возникает вопрос, можно ли заменить LiveData на Flowable?
У LiveData есть одно большое преимущество — он учитывает состояние Activity. Т.е. он не будет слать данные, если Activity свернуто. И он отпишет от себя Activity, которое закрывается.
А вот Flowable этого не умеет. Если в модели есть Flowable, и Activity подпишется на него, то этот Flowable будет держать Activity, пока оно само явно не отпишется (или пока Flowable не завершится).
Давайте рассмотрим пример. ViewModel обычно работает с репозиториями, которые могут быть синглтонами. В репозитории есть какой-то объект для подписки (типа LiveData или Flowable). Репозиторий периодически обновляет в нем данные. Модель берет этот объект из репозитория и отдает его в Activity, и Activity подписывается на этот объект. Объект теперь хранит ссылку на Activity.
Таким образом получилось, что репозиторий держит ссылку на Activity через объект подписки. И если мы закроем Activity, но не отпишем его от объекта подписки, то возникнет утечка памяти, т.к. репозиторий может жить все время работы приложения. И все это время Activity будет висеть в памяти.
Давайте рассмотрим, как это решается в случае с LiveData или Flowable. Важно понимать, что будет происходить с подпиской при закрытии Activity. ViewModel будем рассматривать только как инструмент передачи объекта из репозитория в Activity.
1) ViewModel готов из репозитория предоставить LiveData. И мы в Activiy хотели бы работать с LiveData.
Цепочка ссылок:
Repository -> LiveData -> Activity
Тут получается полная идилия. Activity берет из модели LiveData, подписывается на него и все ок. При закрытии Activity не будет никаких утечек памяти и прочих проблем с подпиской, т.к. LiveData сам отпишет Activity и тем самым разорвет цепочку ссылок.
2) ViewModel готов вернуть нам Flowable, а мы в Activity хотели бы работать с LiveData.
В этом случае конвертируем Flowable в LiveData внутри модели и отдаем LiveData в Activity.
Цепочка ссылок:
Repository -> Flowable -> LiveData -> Activity
Activity снова будет подписано на LiveData. А это значит, что нам, как и в первом варианте, не надо заботиться об этой подписке. LiveData отпишет от себя Activity, и сам отпишется от Flowable. Цепочка ссылок разорвется в двух местах.
3) ViewModel готов вернуть нам LiveData, а мы в Activity хотели бы работать с Flowable.
В этом случае передаем LiveData в Activity и преобразуем его в Flowable.
Цепочка ссылок:
Repository -> LiveData -> Flowable -> Activity
Activity будет подписано на Flowable. А Flowable будет подписан на LiveData. При этом подписка Flowable на LiveData будет работать с учетом Activity LifeCycle. И когда Activity будет закрыто, LiveData сам отпишет от себя Flowable.
Цепочка ссылок разорвется, но, в любом случае, хорошей практикой является отписка от Flowable вручную при закрытии Activity.
4) ViewModel готов вернуть нам Flowable, и мы в Activity хотели бы работать с Flowable.
В этом случае Activity будет подписано на Flowable.
Цепочка ссылок:
Repository -> Flowable -> Activity
При закрытии Activity нам самим необходимо отписать Activity от Flowable.
Как конвертировать LiveData во Flowable и наоборот, мы рассматривали в Уроке 3.
Присоединяйтесь к нам в Telegram:
— в канале StartAndroid публикуются ссылки на новые статьи с сайта startandroid.ru и интересные материалы с хабра, medium.com и т.п.
— в чатах решаем возникающие вопросы и проблемы по различным темам: Android, Kotlin, RxJava, Dagger, Тестирование
— ну и если просто хочется поговорить с коллегами по разработке, то есть чат Флудильня
— новый чат Performance для обсуждения проблем производительности и для ваших пожеланий по содержанию курса по этой теме
Источник
MVVM на Android с компонентами архитектуры + библиотека Koin
Jan 13, 2020 · 7 min read
Введение
С MVVM ( Model— View-ViewModel) процесс разработки графического интерфейса для пользователей делится н а две части. Первая — это работа с языком разметки или кодом GUI. Вторая — разработка бизнес-логики или логики бэкенда (модель данных). Часть V iew model в MVVM — это конвертер значений. Это значит, что view model отвечает за конвертирование объектов данных из модели в такой вид, чтобы с объектами было легко работать. Если смотреть с этой стороны, то view model — это скорее модель, чем представление. Она контролирует большую часть логики отображения. Модель представления может реализовывать паттерн медиатор. Для этого организуется доступ к логике бэкенда вокруг набора юз-кейсов, поддерживаемых представлением.
В этом туториале мы попробуем определить каждый компонент паттерна MVVM, чтобы создать небольшое приложение на Android в соответствии с ним.
На следующей картинке — разные элементы, которые мы собираемся создать при помощи компонента Architecture и библиотеки Koin для внедрения зависимостей.
Архитектуру ниже можно разделить на три различные части.
Представление
Содержит структурное определение того, что пользователи получат на экранах. Вы можете поместить сюда статическое и динамическое содержимое (анимацию и смену состояний). Тут может не быть никакой логики приложения. Для нашего случая в представлении может быть активность или фрагмент.
Модель представления
Этот компонент связывает модель и представление. Отвечает за управление ссылками данных и возможных конверсий. Здесь появляется биндинг. В Android мы не беспокоимся об этом, потому что можно напрямую использовать класс AndroidViewModel или ViewModel.
Модель
Это уровень бизнес-данных и он не связан ни с каким особенным графическим представлением. В Android, согласно “чистой” архитектуре, модель может содержать базу данных, репозиторий и класс бизнес-логики. Картинка ниже описывает взаимодействие между разными компонентами.
Как реализовать паттерн MVVM
Чтобы реализовать паттерн MVVM, важно начать с компонентов, которым для работы нужен другой компонент. Это и есть зависимость.
А с момента появления компонента архитектуры, логичное общее решение — реализовать Android-приложения при помощи модели с изображения ниже. Там вы увидите стрелки, которые ведут от представления (активности/фрагмента) к модели.
А это значит, что View знает о View-Model, а не наоборот, и View Model знает о Model, и не наоборот. То есть у представления будет связь с моделью представления, а у модели представления будет связь с моделью. Строго в таком порядке, никак иначе. Благодаря такой архитектуре приложение легко поддерживать и тестировать.
Чтобы программировать быстро и эффективно, вам нужно начать с моделирования, так как модели не нужны другие компоненты для работы.
Сценарий приложения и реализация модели
Чтобы понять, как функционирует паттерн MVVM, мы напишем небольшое приложение, в котором будут все компоненты с предыдущей картинки. Мы создадим программу, которая покажет данные. Мы их взяли по этой ссылке. Приложение будет сохранять данные локально для того, чтобы потом оно работало в режиме оффлайн.
Приложение будет обрабатывать данные такой структуры. А для простоты я выберу всего лишь некоторые параметры. У класса GithubUser есть room-аннотация и у данных в локальной БД будет такая же структура, как и у данных в API.
У пространства DAO есть только два метода. Один — добавление информации в БД. Второй — ее извлечение.
Пространство базы данных выглядит так:
Во второй части мы реализуем Webservice, который отвечает за получение данных онлайн. Для того будем пользоваться retrofit+coroutines.
Если вы хотите узнать, как пользоваться Retrofit вместе с сопрограммами, загляните сюда .
В третьей части мы реализуем репозиторий. Этот класс будет отвечать за определение источника данных. Для нашего случая их два, так что репозиторий будет только получать данные онлайн, чтобы потом сохранить их в локальной базе данных.
Как сами видите, у репозитория есть конструктор с двумя параметрами. Первый — это класс, который представляет онлайн-данные, а второй — представляет данные оффлайн.
View-Model
После того, как мы описали модель и все ее части, пора ее реализовать. Для этого возьмем класс, родителем которого является класс ViewModel Android Jetpack.
Класс ViewModel создан для того, чтобы хранить и управлять данными, связанными с UI относительно жизненного цикла. Он позволяет данным пережить изменения конфигурации, например, повороты экрана.
View-model берет репозиторий в качестве параметра. Этот класс “знает” все источники данных для нашего приложения. В начальном блоке view-model мы обновляем данные БД. Это делается вызовом метода обновления репозитория. А еще у view-model есть свойство data. Оно получает данные локально напрямую. Это гарантия, что у пользователя всегда будет что-то в интерфейсе, даже если устройство не в сети.
Подсказка: я пользовался вспомогательным классом, который помогал мне управлять состоянием загрузки
Представление
Это последний компонент архитектуры. Он напрямую общается с представлением-моделью, получает данные и, например, передает их в recycler-view. В нашем случае представление — это простая активность.
В представлении происходит отслеживание того, как изменяются данные, как они автоматически обновляются на уровне интерфейса. Для нашего случая в представлении также отслеживается состояние операций загрузки в фоновом режиме. В процесс включено свойство loadingState, которое мы определили выше.
Вот вы и увидели, как я получил экземпляр view-model, используя для этого внедрение. А как это сработает, мы увидим дальше.
Конкретизация объектов и внедрение зависимостей
Наблюдательные заметят, что пока я еще не создал репозиторий и его параметры. Мы будет это делать точно при помощи внедрения зависимостей. А для этого в свою очередь мы берем библиотеку, Koin подходит идеально.
Так мы создадим важные объекты. Нашему приложению они нужны там же и нам останется только вызвать их в разные точки программы. Для этого и нужна магия библиотеки Koin.
В Module.kt есть объявление объекта, который нужен приложению. А в представлении мы берем inject, который говорит Koin, что нужен объект view-model. Библиотека в свою очередь старается найти этот объект в модуле, который мы определили ранее. Когда найдёт, назначит ему свойство userViewModel. А если не найдёт, то выдаст исключение. В нашем случае, код скомпилируется правильно, у нас есть экземпляр view-model в модуле с соответствующим параметром.
Похожий сценарий применится к репозиторию внутри view-model. Экземпляр будет получен из модуля Koin, потому что мы уже создали репозиторий с нужным параметром внутри модуля Koin.
Заключение
Самая сложная работа инженера ПО — это не разработка, а поддержка. Чем больше кода имеет под собой хорошую архитектуру, тем проще поддерживать и тестировать приложение. Вот почему важно пользоваться паттернами. С ними проще создать стабильно работающие программы, а не бомбу.
Вы можете найти полный код приложения у меня на GitHub по этой ссылке.
Источник