What is java support in android

Jake Wharton

Android’s Java 9, 10, 11, and 12 Support

27 November 2018

Note: This post is part of a series on D8 and R8, Android’s new dexer and optimizer, respectively. For an intro to D8 read “Android’s Java 8 support”.

The first post in this series explored Android’s Java 8 support. Having support for the language features and APIs of Java 8 is table stakes at this point. We’re not quite there with the APIs yet, sadly, but D8 has us covered with the language features. There’s a future promise for the APIs which is essential for the health of the ecosystem.

A lot of the reaction to the previous post echoed that Java 8 is quite old. The rest of the Java ecosystem is starting to move to Java 11 (being the first long-term supported release after 8) after having toyed with Java 9 and 10. I was hoping for that reaction because I mostly wrote that post so that I could set up this one.

With Java releases happening more frequently, Android’s yearly release schedule and delayed uptake of newer language features and APIs feels more painful. But is it actually the case that we’re stuck with those of Java 8? Let’s take a look at the Java releases beyond 8 and see how the Android toolchain fares.

Java 9

The last release on the 2 — 3 year schedule, Java 9 contains a few new language features. None of them are major like lambdas were. Instead, this release focused on cleaning up some of the sharp edges on existing features.

Concise Try With Resources

Prior to this release the try-with-resources construct required that you define a local variable (such as try (Closeable bar = foo.bar()) ). But if you already have a Closeable , defining a new variable is redundant. As such, this release allows you to omit declaring a new variable if you already have an effectively-final reference.

This feature is implemented entirely in the Java compiler so D8 is able to dex it for Android.

Unlike the lambdas or static interface methods of Java 8 which required special desugaring, this Java 9 feature becomes available to all API levels for free.

Anonymous Diamond

Java 7 introduced the diamond operator which allowed omitting a generic type from the initializer if it could be inferred from the variable type.

This cut down on redundant declarations, but it wasn’t available for use on anonymous classes. With Java 9 that is now supported.

Once again this is entirely implemented in the Java compiler so the resulting bytecode is as if String was explicitly specified.

Because there is nothing interesting in the bytecode, D8 handles this without issue.

Yet another language feature available to all API levels for free.

Private Interface Methods

Interfaces with multiple static or default methods can often lead to duplicated code in their bodies. If these methods were part of a class and not an interface private helper functions could be extracted. Java 9 adds the ability for interfaces to contain private methods which are only accessible to its static and default methods.

This is the first language feature that requires some kind of support. Prior to this release, the private modifier was not allowed on an interface member. Since D8 is already responsible for desugaring default and static methods, private methods were straightforward to include using the same technique.

Static and default methods are supported natively in ART as of API 24. When you pass —min-api 24 for this example, the static method is not desugared. Curiously, though, the private static method is also not desugared.

We can see that the getHey() method’s access flags still contain both PRIVATE and STATIC . If you add a main method which calls hey() and push this to a device it will actually work. Despite being a feature added in Java 9, ART allows private interface members since API 24!

Those are all the language features of Java 9 and they all already work on Android. How about that.

The APIs of Java 9, though, are not yet included in the Android SDK. A new process API, var handles, a version of the Reactive Streams interfaces, and collection factories are just some of those which were added. Since libcore (which contains implementation of java.* ) and ART are developed in AOSP, we can peek and see that work is already underway towards supporting Java 9. Once included included in the SDK, some of its APIs will be candidates for desugaring to all API levels.

String Concat

The new language features and APIs of a Java release tend to be what we talk about most. But each release is also an opportunity to optimize the bytecode which is used to implement a feature. Java 9 brought an optimization to a ubiquitous language feature: string concatenation.

If we take this fairly innocuous piece of code and compile it with Java 8 the resulting bytecode will use a StringBuilder .

The bytecode contains the code we otherwise would have written if the language didn’t allow simple concatenation.

If we change the compiler to Java 9, however, the result is very different.

The entire StringBuilder usage has been replaced with a single invokedynamic bytecode! The behavior here is similar to how native lambdas work on the JVM which was discussed in the last post.

At runtime, on the JVM, the JDK class StringConcatFactory is responsible for returning a block of code which can efficiently concatenate the arguments and constants together. This allows the implementation to change over time without the code having to be recompiled. It also means that the StringBuilder can be pre-sized more accurately since the argument’s lengths can be queried.

Читайте также:  Among us hacking android

If you want to learn more about why this change was made, Aleksey ShipilГ«v gave a great presentation on the motivations, implementation, and resulting benchmarks of the change.

Since the Android APIs don’t yet include anything from Java 9, there is no StringConcatFactory available at runtime. Thankfully, just like it did for LambdaMetafactory and lambdas, D8 is able to desugar StringConcatFactory for concatenations.

This means that all of the language features of Java 9 can be used on all API levels of Android despite changes in the bytecode that the Java compiler emits.

But Java is now on a six-month release schedule making Java 9 actually two versions old. Can we keep it going with newer versions?

Java 10

The only language feature of Java 10 was called local-variable type inference. This allows you to omit the type of local variable by replacing it with var when that type can be inferred.

This is another feature implemented entirely in the Java compiler.

No new bytecodes or runtime APIs are required for this feature to work and so it can be used for Android just fine.

Of course, like the versions of Java before it, there are new APIs in this release such as Optional.orElseThrow , List.copyOf , and Collectors.toUnmodifiableList . Once added to the Android SDK in a future API level, these APIs can be trivially desugared to run on all API levels.

Java 11

Local-variable type inference was enhanced in Java 11 to support its use on lambda variables. You don’t see types used in lambda parameters often so a lot of people don’t even know this syntax exists. This is useful when you need to provide an explicit type to help type inference or when you want to use a type-annotation on the parameter.

Just like Java 10’s local-variable type inference this feature is implemented entirely in the Java compiler allowing it to work on Android.

New APIs in Java 11 include a bunch of new helpers on String , Predicate.not , and null factories for Reader , Writer , InputSteam , and OutputStream . Nearly all of the API additions in this release could be trivially desugared once available.

A major API addition to Java 11 is the new HTTP client, java.net.http . This client was previously available experimentally in the jdk.incubator.http package since Java 9. This is a very large API surface and implementation which leverages CompletableFuture extensively. It will be interesting to see whether or not this even lands in the Android SDK let alone is available via desugaring.

Nestmates

Like Java 9 and its string concatenation bytecode optimization, Java 11 took the opportunity to fix a long-standing disparity between Java’s source code and its class files and the JVM: nested classes.

In Java 1.1, nested classes were added to the language but not the class specification or JVM. In order to work around the lack of support in class file, nesting classes in a source file instead creates sibling classes which use a naming convention to convey nesting.

Compiling this with Java 10 or earlier will produce two class files from a single source file.

As far as the JVM is concerned, these classes have no relationship except that they exist in the same package.

This illusion mostly works. Where it starts to break down is when one of the classes needs to access something that is private in the other.

When these classes are made siblings, Outer$Inner.sayHi() is unable to access Outer.name because it is private to another class.

In order to work around this problem and maintain the nesting illusion, the Java compiler adds a package-private synthetic accessor method for any member accessed across this boundary.

This is visible in the compiled class file for Outer .

Historically this has been at most a small annoyance on the JVM. For Android, though, these synthetic accessor methods contribute to the method count in our dex files, increase APK size, slow down class loading and verification, and degrade performance by turning a field lookup into a method call!

In Java 11, the class file format was updated to introduce the concept of nests to describe these nesting relationships.

The output here has been trimmed significantly, but the two class files are still produced except without an access$000 in Outer and with new NestMembers and NestHost attributes. These allow the VM to enforce a level of access control between package-private and private called nestmates. As a result, Inner can directly access Outer ’s name field.

ART does not understand the concept of nestmates so it needs to be desugared back into synthetic accessor methods.

Unfortunately, at the time of writing, this does not work. The version of ASM, the library used to read Java class files, predates the final implementation of nestmates. Beyond that, though, D8 does not support desugaring of nest mates. You can star the D8 feature request on the Android issue tracker to convey your support for this feature.

Without support for desugaring nestmates it is currently impossible to use Java 11 for Android. Even if you avoid accessing things across the nested boundary, the mere presence of nesting will fail to compile.

Without the APIs from Java 11 in the Android SDK, its single language feature of lambda parameter type inference isn’t compelling. For now, Android developers are not missing anything by being stuck on Java 10. That is, until we start looking forward…

Java 12

With a release date of March 2019, Java 12 is quickly approaching. The language features and APIs of this release have been in development for a few months already. Through early-access builds, we can download and experiment with these today.

In the current EA build, number 20, there are two new language features available: expression switch and string literals.

Once again, both of these features are implemented entirely as part of the Java compiler without any new bytecodes or APIs.

Читайте также:  Videoder для андроид что это

We can push this to a device to ensure that it actually works at runtime.

This works because the bytecode for expression switch is the same as the “regular” switch we would otherwise write with an uninitialized local, case blocks with break , and a separate return statement. And a multi-line string literal is just a string with newlines in it, something we’ve been able to do with escape characters forever.

As with all the other releases covered, there will be new APIs in Java 12 and it’s the same story as before. They’ll need added to the Android SDK and evaluated for desugaring capability.

Hopefully by the time Java 12 is actually released D8 will have implemented desugaring for Java 11’s nestmates. Otherwise the pain of being stuck on Java 10 will go up quite a bit!

Java 8 language features are here and desugaring of its APIs are coming (star the issue!). As the larger Java ecosystem moves forward to newer versions, it’s reassuring that every language feature between 8 and 12 is already available on Android.

With Java 9 work seemingly happening in AOSP (cross your fingers for Android P+1), hopefully we’ll have a new batch of APIs in the summer as candidates for desugaring. Once that lands, the smaller releases of Java will hopefully yield faster integration into the Android SDK.

Despite this, the end advice remains the same as in the last post. It’s vitally important to maintain pressure on Android for supporting the new APIs and VM features from newer versions of Java. Without APIs being integrated into the SDK they can’t (easily) be made available for use via desugaring. Without VM features being integrated into ART D8 bears a desugaring burden for all API levels instead of only to provide backwards compatibility.

Before these posts move on to talk about R8, the optimizing version of D8, the next one will cover how D8 works around version-specific and vendor-specific bugs in the VM.

(This post was adapted from a part of my Digging into D8 and R8 talk that was never presented. Watch the video and look out for future blog posts for more content like this.)

Источник

Как Java 8 поддерживается в Android

Привет, Хабр! Предлагаю вашему вниманию перевод замечательной статьи из цикла статей небезызвестного Джейка Вортона о том, как происходит поддержка Андроидом Java 8.

Оригинал статьи лежит тут

Несколько лет я работал из дома, и мне часто приходилось слышать, как мои коллеги жалуются на поддержку Андроидом разных версий Java.

Это довольно сложная тема. Для начала нужно определиться, что мы вообще подразумеваем под «поддержкой Java в Android», ведь в одной версии языка может быть много всего: фичи (лямбды, например), байткод, тулзы, APIs, JVM и так далее.

Когда говорят о поддержке Java 8 в Android, обычно подразумевают поддержку фичей языка. Итак, начнем с них.

Лямбды

Одним из главных нововведений Java 8 были лямбды.
Код стал более лаконичным и простым, лямбды избавили нас от необходимости писать громоздкие анонимные классы, используя интерфейс с единственным методом внутри.

После компиляции этого, используя javac и легаси dx tool , мы получим следующую ошибку:

Эта ошибка происходит из-за того, что лямбды используют новую инструкцию в байткоде — invokedynamic , которая была добавлена в Java 7. Из текста ошибки можно увидеть, что Android поддерживает ее только начиная с 26 API (Android 8).

Звучит не очень, ведь вряд ли кто-то будет выпускать приложение с 26 minApi. Чтобы это обойти, используется так называемый процесс десахаризации (desugaring), который делает возможным поддержку лямбд на всех версиях API.

История десахаризации

Она довольно красочна в мире Android. Цель десахаризации всегда одна и та же — позволить новым языковым фичам работать на всех устройствах.

Изначально, например, для поддержки лямбд в Android разработчики подключали плагин Retrolambda. Он использовал тот же встроенный механизм, что и JVM, конвертируя лямбды в классы, но делал это в рантайме, а не во время компиляции. Сгенерированные классы были очень дорогими с точки зрения количества методов, но со временем, после доработок и улучшений, этот показатель снизился до чего-то более-менее разумного.

Затем команда Android анонсировала новый компилятор, который поддерживал все фичи Java 8 и был более производительным. Он был построен поверх Eclipse Java компилятора, но вместо генерации Java-байткода генерировал Dalvik-байткод. Однако его производительность все равно оставляла желать лучшего.

Когда новый компилятор (к счастью) забросили, трансформатор Java байткода в Java байткод, который и выполнял дешугаринг, был интегрирован в Android Gradle Plugin из Bazel — системы сборки Google. И его производительность все равно была невелика, поэтому параллельно продолжался поиск более хорошего решения.

И вот нам представили новый dexer — D8, который должен был заменить dx tool . Десахаризация теперь выполнялась во время конвертации скомпилированных JAR-файлов в .dex (dexing). D8 сильно выигрывает в производительности по сравнению с dx , и, начиная с Android Gradle Plugin 3.1 он стал dexer’ом по умолчанию.

Теперь, используя D8, у нас получится скомпилировать приведенный выше код.

Чтобы посмотреть, как D8 преобразовал лямбду, можно использовать dexdump tool , который входит в Android SDK. Она выведет довольно много всего, но мы заострим внимание только на этом:

Если вы до этого еще не читали байткод, не волнуйтесь: многое из того, что здесь написано, можно понять интуитивно.

В первом блоке наш main метод с индексом 0000 получает ссылку от поля INSTANCE на класс Java8$1 . Этот класс был сгенерирован во время десахаризации . Байткод метода main тоже нигде не содержит упоминаний о теле нашей лямбды, поэтому, скорее всего, она связана с классом Java8$1 . Индекс 0002 затем вызывает static-метод sayHi , используя ссылку на INSTANCE . Методу sayHi требуется Java8$Logger , поэтому, похоже, Java8$1 имплементирует этот интерфейс. Мы можем убедиться в этом тут:

Флаг SYNTHETIC означает, что класс Java8$1 был сгенерирован и список интерфейсов, которые он включает, содержит Java8$Logger .
Этот класс и представляет собой нашу лямбду. Если вы посмотрите на реализацию метода log , то не увидите тело лямбды.

Вместо этого внутри вызывается static метод класса Java8 — lambda$main$0 . Повторюсь, этот метод представлен только в байткоде.

Читайте также:  Виджеты для андроид хонор

Флаг SYNTHETIC снова говорит нам, что этот метод был сгенерирован, и его байткод как раз содержит тело лямбды: вызов System.out.println . Причина, по которой тело лямбды находится внутри Java8.class, простая — ей может понадобиться доступ к private членам класса, к которым сгенерированный класс иметь доступа не будет.

Все, что нужно для понимания того, как работает десахаризация, описано выше. Однако, взглянув на это в байткоде Dalvik, можно увидеть, что там все намного более сложно и пугающе.

Преобразование исходников — Source Transformation

Чтобы лучше понимать, как происходит десахаризация, давайте попробуем шаг за шагом преобразовывать наш класс в то, что будет работать на всех версиях API.

Возьмем за основу тот же класс с лямбдой:

Сначала тело лямбды перемещается в package private метод.

Затем генерируется класс, имплементирующий интерфейс Logger , внутри которого выполняется блок кода из тела лямбды.

Далее создается синглтон инстанс Java8$1 , который хранится в static переменной INSTANCE .

Вот итоговый задешугаренный класс, который может использоваться на всех версиях API:

Если вы посмотрите на сгенерированный класс в байткоде Dalvik, то не найдете имен по типу Java8$1 — там будет что-то вроде -$$Lambda$Java8$QkyWJ8jlAksLjYziID4cZLvHwoY . Причина, по которой для класса генерируется такой нейминг, и в чем его плюсы, тянет на отдельную статью.

Нативная поддержка лямбд

Когда мы использовали dx tool , чтобы скомпилировать класс, содержащий лямбды, сообщение об ошибке говорило, что это будет работать только с 26 API.

Поэтому кажется логичным, что если мы попробуем скомпилировать это с флагом —min-api 26 , то десахаризации происходить не будет.

Однако если мы сдампим .dex файл, то в нем все равно можно будет обнаружить -$$Lambda$Java8$QkyWJ8jlAksLjYziID4cZLvHwoY . Почему так? Это баг D8?

Чтобы ответить на этот вопрос, а также почему десахаризация происходит всегда, нам нужно заглянуть внутрь Java-байткода класса Java8 .

Внутри метода main мы снова видим invokedynamic по индексу 0 . Второй аргумент в вызове — 0 — индекс ассоциируемого с ним bootstrap метода.

Вот список bootstrap методов:

Здесь bootstrap метод назван metafactory в классе java.lang.invoke.LambdaMetafactory . Он живет в JDK и занимается созданием анонимных классов налету (on-the-fly) в рантайме для лямбд так же, как и D8 генерит их в компайлтайме.

Если взглянуть на документацию Android к java.lang.invoke
или на исходники AOSP к java.lang.invoke , увидим, что в рантайме этого класса нет. Вот поэтому дешугаринг всегда происходит во время компиляции, независимо от того, какой у вас minApi. VM поддерживает байткод инструкцию, похожую на invokedynamic , но встроенный в JDK LambdaMetafactory недоступен для использования.

Method References

Вместе с лямбдами в Java 8 добавили ссылки на методы — это эффективный способ создать лямбду, тело которой ссылается на уже существующий метод.

Наш интерфейс Logger как раз является таким примером. Тело лямбды ссылалось на System.out.println . Давайте превратим лямбду в метод референc:

Когда мы это скомпилируем и взглянем на байткод, то увидим одно различие с предыдущей версией:

Вместо вызова сгенерированного Java8.lambda$main$0 , который содержит вызов System.out.println , теперь System.out.println вызывается напрямую.

Класс с лямбдой больше не static синглтон, а по индексу 0000 в байткоде видно, что мы получаем ссылку на PrintStream — System.out , который затем используется для того, чтобы вызвать на нем println .

В итоге наш класс превратился в это:

Default и static методы в интерфейсах

Еще одним важным и серьезным изменением, которое принесла Java 8, стала возможность объявлять default и static методы в интерфейсах.

Все это тоже поддерживается D8. Используя те же инструменты, что и ранее, несложно увидеть задешугаренную версию Logger’a с default и static методами. Одно из различий с лямбдами и method references в том, что дефолтные и статик методы реализованы в Android VM и, начиная с 24 API, D8 не будет дешугарить их.

Может, просто использовать Kotlin?

Читая статью, большинство из вас, наверное, подумали о Kotlin. Да, он поддерживает все фичи Java 8, но реализованы они kotlinc точно так же, как и D8, за исключением некоторых деталей.

Поэтому поддержка Андроидом новых версий Java до сих пор очень важна, даже если ваш проект на 100% написан на Kotlin.

Не исключено, что в будущем Kotlin перестанет поддерживать байткод Java 6 и Java 7. IntelliJ IDEA, Gradle 5.0 перешли на Java 8. Количество платформ, работающих на более старых JVM, сокращается.

Desugaring APIs

Все это время я рассказывал про фичи Java 8, но ничего не говорил о новых API — стримы, CompletableFuture , date/time и так далее.

Возвращаясь к примеру с Logger’ом, мы можем использовать новый API даты/времени, чтобы узнать, когда сообщения были отправлены.

Снова компилируем это с помощью javac и преобразуем его в байткод Dalvik с D8, который дешугарит его для поддержки на всех версиях API.

Можете даже запушить это на свой девайс, чтобы убедиться, что оно работает.

Если на этом устройстве API 26 и выше, появится месседж Hello. Если нет — увидим следующее:

D8 справился с лямбдами, метод референсами, но не сделал ничего для работы с LocalDateTime , и это очень печально.

Разработчикам приходится использовать свои собственные реализации или обертки над date/time api, либо использовать библиотеки по типу ThreeTenBP для работы со временем, но почему то, что ты можешь написать руками, не может сделать D8?

Эпилог

Отсутствие поддержки всех новых API Java 8 остается большой проблемой в экосистеме Android. Ведь вряд ли каждый из нас может позволить указать 26 min API в своем проекте. Библиотеки, поддерживающие и Android и JVM, не могут позволить себе использовать API, представленный нам 5 лет назад!

И даже несмотря на то, что саппорт Java 8 теперь является частью D8, каждый разработчик все равно должен явно указывать source и target compatibility на Java 8. Если вы пишете собственные библиотеки, то можете усилить эту тенденцию, выкладывая библиотеки, которые используют Java 8 байткод (даже если вы не используете новые фичи языка).

Над D8 ведется очень много работ, поэтому, кажется, в будущем с поддержкой фичей языка все будет ок. Даже если вы пишете только на Kotlin, очень важно заставлять команду разработки Android поддерживать все новые версии Java, улучшать байткод и новые API.

Этот пост — письменная версия моего выступления Digging into D8 and R8.

Источник

Оцените статью