- Android UI thread
- Рассмотрим взаимодействие системы Android с компонентами приложения.
- Android Thread Message Looper Handler Example
- 1. Android Message Queue And Looper Introduction.
- 2. How To Create Child Thread’s Message Queue And Looper.
- 3. Android Child Thread Message Queue And Looper Example.
- Main Loop (Главный цикл) в Android Часть 2. Android SDK
- Looper
- Может быть создан для любого из потоков и только один
- Главный среди равных
- Логирование
- Подсчет времени
- Наблюдатели и try/catch
- ActivityThread
- MessageQueue
- Main Thread не ждет
- IdleHandler
- syncBarrier
- Message
- Pool, obtain, recycle
- Handler
- Зачем он нужен
- post и postDelayed
Android UI thread
Большая часть кода Android приложения работает в контексте компонент, таких как Activity, Service, ContentProvider или BroadcastReceiver. Рассмотрим, как в системе Android организованно взаимодействие этих компонент с потоками.
При запуске приложения система выполняет ряд операций: создаёт процесс ОС с именем, совпадающим с наименованием пакета приложения, присваивает созданному процессу уникальный идентификатор пользователя, который по сути является именем пользователя в ОС Linux. Затем система запускает Dalvik VM где создаётся главный поток приложения, называемый также «поток пользовательского интерфейса (UI thread)». В этом потоке выполняются все четыре компонента Android приложения: Activity, Service, ContentProvider, BroadcastReceiver. Выполнение кода в потоке пользовательского интерфейса организованно посредством «цикла обработки событий» и очереди сообщений.
Рассмотрим взаимодействие системы Android с компонентами приложения.
Activity. Когда пользователь выбирает пункт меню или нажимает на экранную кнопку, система оформит это действие как сообщение (Message) и поместит его в очередь потока пользовательского интерфейса (UI thread).
Service. Исходя из наименования, многие ошибочно полагают, что служба (Service) работает в отдельном потоке (Thread). На самом деле, служба работает так же, как Activity в потоке пользовательского интерфейса. При запуске локальной службы командой startService, новое сообщение помещается в очередь основного потока, который выпонит код сервиса.
BroadcastReceiver. При создании широковещательного сообщения система помещает его в очередь главного потока приложения. Главный поток позднее загрузит код BroadcastReceiver который зарегистрирован для данного типа сообщения, и начнёт его выполнение.
ContentProvider. Вызов локального ContentProvider немного отличается. ContentProvider также выполняется в основном потоке но его вызов является синхронным и для запуска кода ContentProvider не использует очередь сообщений.
Исходя из вышесказанного можно заметить, что если главный поток в данный момент обрабатывает пользовательский ввод или выполняет иное действие, выполнение кода, полученного в новом сообщении, начнётся только после завершения текущей операции. Если какая либо операция в одном из компонентов потребует значительного времени выполнения, пользователь столкнётся или с анимацией с рывками, или с неотзывчивыми элементами интерфейса или с сообщением системы «Приложение не отвечает» (ANR).
Для решения данной проблемы используется парадигма параллельного программирования. В Java для её реализации используется понятие потока выполнения (Thread).
Thread: поток, поток выполнения, иногда ещё упоминается как нить, можно рассматривать как отдельную задачу, в которой выполняется независимый набор инструкций. Если в вашей системе только один процессор то потоки выполняются поочередно (но быстрое переключение системы между ними создает впечатление параллельной или одновременной работы). На диаграмме показано приложение, которое имеет три потока выполнения:
Но, к сожалению, для взаимодействия с пользователем, от потока мало пользы. На самом деле, если вы внимательно посмотрите на диаграмму выше, вы поймёте, что как только поток выполнить все входящие в него инструкции он останавливается и перестаёт отслеживать действия пользователя. Чтобы избежать этого, нужно в наборе инструкций реализовать бесконечный цикл. Но возникает проблема как выполнить некое действие, например отобразить что-то на экране из другого потока, иными словами как вклиниться в бесконечный цикл. Для этого в Android можно использовать Android Message System. Она состоит из следующих частей:
Looper: который ещё иногда ещё называют «цикл обработки событий» используется для реализации бесконечного цикла который может получать задания используется. Класс Looper позволяет подготовить Thread для обработки повторяющихся действий. Такой Thread, как показано на рисунке ниже, часто называют Looper Thread. Главный поток Android на самом деле Looper Thread. Looper уникальны для каждого потока, это реализованно в виде шаблона проектирования TLS или Thread Local Storage (любопытные могут посмотреть на класс ThreadLocal в Java документации или Android).
Message: сообщение представляет собой контейнер для набора инструкций которые будут выполнены в другом потоке.
Handler: данный класс обеспечивает взаимодействие с Looper Thread. Именно с помощью Handler можно будет отправить Message с реализованным Runnable в Looper, которая будет выполнена (сразу или в заданное время) потоком с которым связан Handler. Код ниже иллюстрирует использование Handler. Этот код создаёт Activity которая завершиться через определённый период времени.
HandlerThread: написание кода потока реализующего Looper может оказаться не простой задачей, чтобы не повторять одни и те же ошибки система Android включает в себя класс HandlerThread. Вопреки названию этот класс не занимается связью Handler и Looper.
Практическую реализацию данного подхода можно изучить на примере кода класса IntentService, данный класс хорошо подходит для выполнения асинхронных сетевых или иных запросов, так как он может принимать задания одно за другим, не дожидаясь полной обработки текущего, и завершает свою работу самостоятельно.
Выполнение операций в отдельном потоке, не означает, что вы можете делать все что угодно, не влияя на производительность системы. Никогда не забывайте, что написанный вами код работает на машинах, как правило, не очень мощных. Поэтому всегда стоит использовать возможности предоставляемые системой для оптимизации.
Подготовлено на основе материалов AndroidDevBlog
Источник
Android Thread Message Looper Handler Example
Android’s message queue and queue looper are aimed at the specific thread, a thread can have it’s own message queue and queue looper.
1. Android Message Queue And Looper Introduction.
- If you want to send messages between different threads, you need to add a message object in that thread’s message queue. Then the queue looper will fetch the message and process it.
- In android development, Activity is commonly used as the main thread. Android OS will create a message queue and queue looper for the main thread automatically.
- So you can use Handler to send messages to the Activity class to let it modify the UI component.
- Because the UI component is thread-unsafe, only the main thread can modify it.
- Please read Android Handler Example to learn more.
2. How To Create Child Thread’s Message Queue And Looper.
- However, the worker thread created by default has no message queue and message looper, If you want the worker thread to have a message queue and message looper, you can follow the below steps.
- Call Looper.prepare() to create the message queue in the thread.
- Create a thread-specified Handler that handles messages in the message queue.
- Call Looper.loop() to enter the message loop.
- If you want the worker thread to quit the message loop, please call Handler.getLooper().quit().
3. Android Child Thread Message Queue And Looper Example.
Источник
Main Loop (Главный цикл) в Android Часть 2. Android SDK
Основой любого приложения является его главный поток. На нем происходят все самые важные вещи: создаются другие потоки, меняется UI. Важнейшей его частью является цикл. Так как поток главный, то и его цикл тоже главный — в простонародье Main Loop.
Тонкости работы главного цикла уже описаны в Android SDK, а разработчики лишь взаимодействуют с ним. Поэтому, хотелось бы разобраться подробней, как работает главный цикл, для чего нужен, какие проблемы решает и какие у него есть особенности.
Это вторая часть цикла статей по разбору главного цикла в Android. В первой части мы разобрались с тем, что такое главный цикл и как он работает. В этой же части давайте разберемся как Main Loop устроен в Android SDK. Разбираться будем в контексте Android SDK версии 30.
Looper
Начнем мы с самого главного — Looper. Напомню, что этот класс отвечает за сам цикл и его работу. Далее в рассуждениях я буду отталкиваться от того, что вы прочли первую часть и/или понимаете общую логику работы главного цикла. Приступим.
Может быть создан для любого из потоков и только один
Первое, что бросается в глаза — приватный конструктор.
Создать Looper можно только используя метод prepare.
При вызове публичного метода prepare вызывается его приватная реализация. Она принимает в себя параметр quitAllowed. Он будет true, если для данного Looper есть возможность завершится во время работы приложения. Для главного потока этот параметр всегда будет false, так как если завершится главный поток, то завершится и приложение. Для побочных же потоков этот параметр всегда равен true.
Также в методе prepare можно заметить обращение к полю sThreadLocal типа ThreadLocal. Что же это такое?
ThreadLocal это такое хранилище в котором для каждого из потоков будет хранится свое значение. Допустим я из потока 1 кладу в это хранилище true, затем если я обращусь из этого же потока к хранилищу — я получу true. Но если я обращусь к этому хранилищу из другого потока, то мне вернется null, так как для этого потока значение еще не было записано.
Looper использует этот механизм вкупе с приватным конструктором для того, чтобы обеспечить уникальность Looper для каждого из потоков. Внутри метода prepare с помощью ThreadLocal он сначала проверяет был ли уже создан Looper для текущего потока, если это так, то бросает исключение которое скажет о том, что негоже создавать несколько Looper для одного потока. Если же Looper для текущего потока еще не был создан, то он создает новый Looper и сразу же записывает его в ThreadLocal.
Для получения экземпляра Looper, созданного в методе prepare, есть метод myLooper. Он просто каждый раз обращается к sThreadLocal для получения значения для текущего потока.
С такой логикой Looper можно создать для любого из потоков, пользоваться и при этом точно знать, что для данного потока Looper только один. Допустим у нас есть 5 потоков и каждый из них создает и обращается к Looper. В итоге у нас будет создано 5 экземпляров Looper, но при обращении к Looper.myLooper каждый из потоков будет получать свой уникальный экземпляр.
Главный среди равных
Правда тут появляется вопрос — если Looper может быть несколько, то какой из них является главным циклом? Ведь я могу создать несколько потоков, для каждого из них создать Looper, то как потом другим программистам понять кто же из них главный и куда им слать сообщения? Создатели Android подумали так же. Поэтому в Looper есть следующий код:
Отдельный метод prepareMainLooper как раз занимается тем, что создает Looper для текущего потока и записывает его в отдельное статическое поле sMainLooper, тем самым как-бы объявляя его главным. Теперь если кто-то попробует вызвать prepareMainLooper с другого потока, то будет брошено исключение которое скажет нам, что главный вообще-то может быть только один.
Еще у главного потока есть свой отдельный getter — getMainLooper, ведь обращение к главному циклу может понадобиться где угодно. Таким образом, разработчики всегда будут знать кто тут главный Looper.
Теперь давайте ближе взглянем на особенности самого цикла, а значит на метод loop.
Логирование
Первое что бросается в глаза в методе loop, это то, что у нас вместо цикла while используется for с двумя точками с запятой. Такой подход вроде как производительнее.
Также можно заметить что остановка бесконечного цикла делается не с помощью переключения отдельной переменной isAlive, а помощью получение null от MessageQueue.next.
Куда более интересное отличие, что в Looper из Android SDK у нас появляется логирование. Для него используется класс под названием Printer. По сути его единственной функцией является вывод сообщения с помощью метода println.
Инициализированный объект Printer хранится в поле mLogging, то есть у каждого из Looper может быть свой личный Printer. Выставляется Printer через отдельный сеттер. Если же Printer не задать, то и логирования не будет.
Внутри самого метода loop Printer используется трижды:
в первый раз когда мы принимаем сообщение. Ссылка из поля mLogging записывается в final переменную logging. Это нужно, чтобы не было ситуаций когда во время обработки сообщения мы сменили Printer в поле mLogging и логирование по одному сообщению произошло в разные места;
во второй раз когда он сообщает нам о том, что началась обработка сообщения и выводит информацию о самом сообщении;
в третий раз когда он сообщает нам о том, что обработка сообщения завершена и выводит информацию о самом сообщении;
Но логирование не является единственным способом отслеживания работы Looper. Дополнительно используется класс Trace. Он нужен для трассировки стека методов через SysTrace. С помощью SysTrace мы в Profiler из Android Studio можем просматривать этот самый стек и время исполнения каждого из методов в нем. Для этого, перед тем как начнет обрабатываться новое сообщение вызывается Trace.traceBegin и когда обработка сообщения завершится Trace.traceEnd.
Но это еще не все методы слежки.
Подсчет времени
Looper считает время доставки и обработки сообщений и если это время больше ожидаемого, то он сообщит нам об этом. Это может понадобиться в поисках источников фризов и лагов. Допустим у нас экран 60 Гц, значит желательно, чтобы каждое сообщение обрабатывалось не более 1000 / 60 = 16,6 мс (на самом деле нужно меньше, но не суть), иначе главный поток не успеет подготовить данные для отрисовки и у нас используется прошлый кадр. Из-за этого будет казаться будто бы изображение зависло, а значит интерфейс перестанет быть плавным.
Для этого у нас имеется два поля типа long: mSlowDeliveryThresholdMs отвечающий за время доставки сообщения и mSlowDispatchThresholdMs отвечающий за время обработки сообщения.
Выставляем mSlowDispatchThresholdMs равным 16 и Looper сам будет уведомлять нас о всех сообщениях которые обрабатывались дольше этого времени и соответственно являются причиной подвисания.
Для выставления значений этих полей создан отдельный метод setSlowLogThresholdMs. Эти поля всегда выставляются парой.
Также есть возможность задать это время с помощью системной переменной. Имя которой формируется по следующему принципу: log.looper. . .slow.
Теперь посмотрим как это всё работает внутри метода loop.
Выглядит как-то путано, не правда ли? Сначала значение полей записываются в локальные переменные. Затем проверяется, не было ли задано ограничение с помощью системной переменной, если это так, то берется именно оно. Если оба значение для время доставки и обработки больше нуля, то метод loop понимает, что время начать считать.
Далее формируются два значения: начала и окончания. Если с обработкой все понятно, то для подсчета времени доставки в качестве времени начала выступает ожидаемое время начала обработки, а в качестве времени окончания используется время реального начала обработки.
После того как обработка сообщения завершится вызывается статический метод showSlowLog отдельно для времени доставки и отдельно для времени обработки.
В самом методе все довольно просто — из времени окончания вычитается время начала, таким образом получается длительность обработки или доставки. Если эта длительность больше чем ожидаемая, то происходит вывод в лог информации о сообщении.
Интересный момент тут в том, что логирование происходит с помощью класса Slog, а не обычного Log. Slog это специальный класс который выводит логи от имени системы. Так что, имейте ввиду, что если установить фильтр по имени вашего процесса в logcat, то вы не увидите этих сообщений.
Наблюдатели и try/catch
И это еще не все способы наблюдения за Looper. До этого информация выводилась либо в лог, либо в SysTrace. Но что если надо следить за Looper прямо в коде? Для этого используются внутренний interface Looper — Observer.
Он содержит в себе методы наблюдения за стартом обработки сообщения, за окончанием обработки сообщения и за вероятным исключением при обработке сообщения. Последний метод может понадобиться, чтобы как-то использовать исключение которое привело к падению приложения, например отправить информацию о нем на удаленный сервер, как это делает Firebase Crashlytics.
Сам Observer хранится статической переменной sObserver, то есть наблюдатель выставляется сразу для всех экземпляров Looper. Выставляется он через отдельный сеттер.
Сама логика вызова методов Observer довольно простая.
В момент обработки сообщения внутри метода loop проверяется — есть ли сейчас наблюдатель, если наблюдатель имеется то у него вызывается метод messageDispatchStarting. Методы messageDispatched и dispatchingThrewException вызываются в соответствующих местах.
Можно заметить, что обработка сообщения обернута в try-catch-finally. Это необходимо, чтобы в случае ошибки правильно отработали методы трассировки SysTrace, а так же вызов метода dispatchingThrewException у наблюдателя. И лишь потом будет брошено исключение которое и завершит наше приложение.
Это пожалуй все интересные особенности класса Looper в Android SDK.
ActivityThread
Теперь давайте рассмотрим где же всё-таки у нас идет работа с самим Looper. А происходит это всё также в методе main и находится он в классе ActivityThread.
В нем сначала вызывается метод prepareMainLooper. Далее выставляется реализация Printer. И под самый конец метода вызывается метод loop запускающий главный цикл. Последней строкой этого метода бросается исключение. Таким образом, как только цикл завершится, то и завершится весь процесс.
Если хотите поподробнее узнать о том как запускается процесс в андроид то рекомендую посмотреть эту статью.
MessageQueue
Теперь рассмотрим какими особенностями обладает MessageQueue — класс отвечающий за работу очереди сообщений в Android SDK.
Main Thread не ждет
Первая особенность MessageQueue заключается в том, что вместо стандартных методов из Java wait и notify используются нативные методы nativePollOnce и nativeWake.
Когда мы пытаемся запросить следующее сообщение и его не оказывается, то вместо wait вызывается nativePollOnce, в который передается время на которое надо уснуть.
Когда мы пытаемся добавить новое сообщение у нас вместо метода notify вызывается метод nativeWake.
Почему же нельзя воспользоваться обычными wait и notify? Дело в том, что у Android приложений помимо Java слоя есть еще и прослойка C++ в которой на главном потоке тоже могут происходит различные операции которые стоит выполнить. Следовательно воспользоваться wait у нас не получится, так как это усыпит главный поток без передачи управления прослойке C++.
В прослойке C++ так же есть свой Looper, но подробнее мы разберем его в следующей статье.
Вызов C++ конечно интересен сам по себе, но есть в MessageQueue что-то, что может пригодится обычному разработчику? Конечно есть.
IdleHandler
Это особый механизм, который позволяет выполнять какие-либо действия на главном потоке когда все сообщения из очереди будут выполнены. Он хорошо подходит для действий которым неважно когда они будут выполнены — сейчас или через пол секунды. С помощью этого механизма можно избавиться от некоторых фризов, убрав какое-то тяжелое или не очень действие из основной очереди сообщений.
Давайте посмотрим на реализацию этого механизма. По своей сути IdleHandler это обычный интерфейс с одним единственным методом — queueIdle. В нем и будет содержатся действие которое мы планируем выполнить.
Как можно заметить, этот метод возвращает boolean. Если вернуть false, то наше действие больше не повторится, если же вернуть true — то наше действие выполнится еще раз. Поэтому лучше лишний раз не ставить true, дабы избежать ситуаций когда у нас появляется бесконечно повторяющееся действие на главном потоке.
В классе MessageQueue в поле mIdleHandlers находится список еще не выполненных IdleHandler, а также есть метод для добавления нового IdleHandler — addIdleHandler.
Единственной особенностью addIdleHandler является синхронизация.
Теперь, надо как-то узнать, что основная очередь сообщений опустела и настало время выполнения IdleHandler’ов. Для этого в методе next, после того как станет понятно, что доступных для выполнения сообщений в основной очереди нет, выполнится следующий код:
По сути произойдет проверка, что в ходе выполнения метода next, IdleHandler’ы еще не запускались, а также что сообщений в очереди, которые нужно обработать прямо сейчас, уже нет. Если это так, то начнется обработка IdleHandler, иначе просто будет обработано следующее сообщение.
Настало время выполнить IdleHandler.
Для этого значения из mIdleHandlers копируются в отдельный массив mPendingIdleHandlers. Отдельный массив нужен, чтобы избежать проблем с многопоточностью.
Само же выполнение происходит достаточно стандартно. В цикле мы проходим по нашим IdleHandler и последовательно выполняем каждый из них.
При этом выполнение обернуто в try-catch. После выполнения в зависимости от результата метода queueIdle IdleHandler удалиться из общего списка на выполнение. Если во время выполнения IdleHandler он бросит исключение, то он так же удалиться из списка на выполнение.
От чего-то полезного перейдем к тому, чем вы по идее никогда не должны пользоваться, ну разве что очень редко.
syncBarrier
syncBarrier нужен для того чтобы остановить выполнение очереди сообщений по какой-либо причине.
К сожалению (или к счастью) методы работы с syncBarrier помечены аннотацией Hide, а значит мы не сможем вызвать их из своего кода честными методами.
Основной способ использования этого механизма появился в Android 5. В нем появился выделенный поток для рендеринга (до этого рендеринг происходил на главном потоке). Из-за этого пришлось придумывать как останавливать обработку главного потока, а конкретно его задач связанных с интерфейсом, пока поток рендеринга считывал дерево View.
Работает этот механизм очень просто. Для того чтобы исполнение очереди сообщений приостановилось, в очередь сообщений добавляется особо промаркированное сообщение.
Далее когда при выполнении метода MessageQueue next оно окажется следующим, то очередь сообщений остановится вместо того чтобы выполнять сообщения.
Затем, когда нужно восстановить обработку очереди сообщений промаркированное сообщение удаляется и очередь продолжает работать как не в чем не бывало.
Но ведь не все задачи главного потока связаны с отрисовкой View. Зачем останавливать все сообщения? Разработчики Android SDK подумали так же. Вы можете пометить ваше сообщение как асинхронное, с помощью метода Message.setAsynchronous(true). На такие сообщения syncBarrier не распространяется и они продолжат выполняться в обычном режиме.
Message
Важное примечание. Класс Message и Handler мы будем рассматривать только в контексте главного цикла. Другие их особенности связанные с возможностью передачи сообщений между потоками и между разными узлами приложения — сейчас опустим.
Pool, obtain, recycle
У Message имеется private конструктор. Для чего это сделано? Так как, за время работы процесса в нем генерируется и пересылается огромное количество сообщений, то каждый раз создавать новый объект Message будет весьма затратно. Даже такая простая вещь как создание объекта при большом количестве вызовов может иметь значение. Поэтому используются особый pool сообщений. В него будут складываться уже ставшие ненужными объекты Message и когда нам понадобится новое сообщение мы вместо создания нового объекта просто будем переиспользовать старый ненужный объект.
Так же, как и в случае с очередью сообщений, pool представляет из себя односвязный список, ссылка на начало которого хранится в поле sPool. Отдельным полем sPoolSize хранится размер этого списка, он нам понадобится чтобы наш pool не слишком разрастался и мы могли контролировать его размер.
Так как конструктор приватный, то новое сообщение создается через метод obtain. Рассмотрим его подробнее:
Первое что нас ждёт — блок синхронизации, внутри него мы смотрим — есть ли у нас сообщения в sPool. Если есть, то забираем первое сообщение из pool и возвращаем его, при этом не забывая поменять ссылку на начало списка и уменьшить значение sPoolSize.
Если же в sPool сообщений нет, то создаем новое сообщение через приватный конструктор. Но как объекты попадают в sPool? Для этого, после того как MessageQueue выполняет действие сообщения, оно вызывает у него метод recycle.
Внутри этого метода сначала проверяется — используется ли сейчас сообщение, если да, то бросается исключение, ведь в sPool должны попадать уже ненужные сообщения. Иначе вызывается приватный метод recycleUnchecked.
Внутри recycleUnchecked во все поля сообщения выставляются значения по умолчанию, а затем если наш pool ещё не заполнен, то в него добавляется наше сообщение, при этом значение sPoolSize увеличивается.
Handler
Зачем он нужен
Помимо Looper, Message и MessageQueue в главном цикле Android SDK присутствует ещё один класс — Handler. Для чего же он нужен? Дело в том, что что с точки зрения безопасности и стабильности кода давать программистам прямой доступ к очереди сообщений может быть опасно. Помимо того, что кто-то может напакостить поменяв очередь, так ещё и такие изменения будет очень сложно отследить. Для решения этой проблемы и нужен Handler, он является фасадом для логики работы с очередью сообщений.
Если мы захотим из кода приложения добавить новое сообщение в очередь, то мы должны делать это через Handler, напрямую это сделать никак не получится, так как большинство методов MessageQueue имеют видимость package-local, а не public.
post и postDelayed
Итак, мы захотели добавить новое сообщение в очередь. Как нам это сделать? Для добавления нового сообщения в очередь у Handler есть методы post и postDelayed. Эти методы есть не только у Handler, но и например у view: post, postDelayed, есть аналог и у Activity: runOnUiThread, но все они так или иначе в итоге сводятся к вызову Handler.
Метод post просто добавляет новое сообщение в конец очереди.
Метод postDelayed добавляет отложенное сообщение, которое выполнится через определенный промежуток времени. Для этого в поле when класса Message записывается время с момента старта JVM + время через которое надо выполнить сообщение, таким образом MessageQueue понимает когда надо выполнить сообщение.
Стоит заметить, что с postDelayed стоит быть аккуратными если вы используете их в объектах с коротким жизненным циклом. Иначе может сложится ситуация когда ваш объект уже готов быть собран сборщиком мусора, но сообщение которое он отправил ещё не успело выполнится. В случае с post беда не велика и я бы даже назвал это микроутечкой памяти, но в случае с postDelayed это уже может быть скорее миниутечка, ведь объект утечет на тот период времени, что вы указали.
На мой взгляд, это пожалуй все самое интересное из Android SDK связанное с Looper, MessageQueue и Message. Поэтому можно сказать, что как главный цикл работает в Android SDK и какие особенности имеет мы разобрались. По крайней мере на слое Java, но есть же еще и упомянутый C++ слой. Да и не секрет, что Android приложения пишутся не только с помощью Java Android SDK, есть Flutter, React Native, Chrome и игры. Какие особенности есть у них мы кратко разберем в следующей и финальной части этого цикла статей.
Источник