- Почему в iPhone до сих пор стоят 12 Мп камеры?
- Традиционная структура
- Quad Bayer
- Dual Pixel
- Зачем в Айфоне 3 камеры: для чего нужна каждая и как переключаться?
- Проблема в нехватке места
- Дополнительная камера – решение проблемы!
- Две камеры хорошо, а три – лучше?
- Три (или четыре?) камеры в iPhone 12 Pro
- Широкоугольная камера в iPhone
- Сверхширокоугольная камера в iPhone
- Телефото камера в iPhone
- Сканер LiDAR в iPhone
- Как переключаться между камерами в iPhone?
Почему в iPhone до сих пор стоят 12 Мп камеры?
Заметили, что мегапикселей стало как-то очень много? В Samsung готовят матрицы разрешением 600 Мп, уже есть — 108 Мп, а вот в iPhone, по-прежнему, 12 Мп. Почему так?
Вы наверное думаете, что всё дело в Deep Fusion и других волшебных алгоритмах. Отчасти, да. Но дело не только в них.
А что если я вам скажу, что в iPhone гораздо больше мегапикселей, чем мы думаем. А в Samsung, наоборот, гораздо меньше. Смотря как посчитать эти мегапиксели. Что это еще за заговор такой? Давайте разберемся!
Традиционная структура
Первый момент. Если внимательно посмотреть на современные ультра-мегапиксельные матрицы на 48, 64 или даже 108 Мп (а Samsung официально анонсировал, что работает над 600 Мп сенсором), то становится понятно, что разрешение матрицы стало вещью относительной. Почему я так говорю?
Традиционно, каждый пиксель на матрице состоял как минимум из 3 вещей:
- Фотодиод — маленький сенсор, который улавливает свет.
- Это цветовой фильтр, который позволят каждому фотодиоду улавливать только нужный спектр света: красный, зеленый или синий.
- Микролинза — которая позволяет точнее фокусировать свет внутрь пикселя.
И получается что если в пикселе есть эти три компонента, его можно назвать полноценным. И в матрицах с такими дополнениями пикселя мы всегда получаем честное разрешение: если матрица 12 МП, то и фотография будет 12 МП. Но разве можно делать как-то иначе?
Quad Bayer
Оказывается, можно. Долгое время у производителей матриц была проблема. Они никак не могли сделать пиксель меньше 1 мкм. А значит они не могли при том же физическом размере матрицы увеличить разрешение. Вот мы и сидели в основном с 12 Мп камерами.
Но в 2018 году барьер в 1 мкм был преодолён и появились первые компактные матрицы с размером пикселя 0,9 или 0,8 мкм и разрешением в 48 МП и больше. Но с уменьшением размера пикселя при прочих равных падает и их светочувствительность. Что, кстати, происходит не всегда…
Поэтому придумали очень простой хак. Цветовой фильтр стали накладывать не на один, а сразу на четыре пикселя и назвали такую структуру Quad Bayer, ну или Tetra Cell, если вы маркетолог Samsung. А дальше, объединив 4 пикселя в один гигантский, мы получаем отличную светочувствительность!
Но при этом реальное разрешение в 48 Мп камерах с Quad Bayer структурой в 4 раза меньше номинального и все равно — 12 Мп. Потому что пиксели в таких матрицах не проходят наш критерий полноценности: в каждом пикселе есть фотодиод, в каждом есть микролинза, но цветовой фильтр только один на четырёх. А значит цветовое разрешение в таких камерах в 4 раза ниже фактического.
Более того, даже в новых Samsung со 108 Мп камерами, реальное разрешение тоже 12 Мп, потому как в них объединяют не четыре, а сразу девять пикселей. Итого, 108 делим на 9, получаем 12.
Но почему же просто не сделать большие пиксели и не заморачиваться с этим объединением? Как ни странно такой подход даёт массу преимуществ!
Во-первых, днём когда света много — можно не объединять пиксели, а наоборот, при помощи алгоритма Re-mosaic можно восстановить хоть и неполное разрешение матрицы, но очень высокое.
Во-вторых, мы можем заставить разные пиксели работать с разной выдержкой. Тогда на выходе мы получим один светлый и один темный кадр, а склеив их мы можем получить полноценную HDR фотографию, или даже HDR видео!
Короче, вариантов для экспериментов масса и грех такое не использовать.
Но, если все уже поняли, что подход работает, почему же тогда ни в iPhone, ни в Pixel не используется преимуществами новых матриц? И вот тут самое интересное. На самом деле они пользуется, причем давно, но по-другому!
Dual Pixel
Помимо структур Bayer и Quad Bayer, существует и альтернативная школа, которая называется Dual Pixel или вернее сказать Dual Photo Diode.
Она отличается от традиционного Байера тем, что каждый пиксель в ней состоит из двух независимых фотодиодов. При этом оба фотодиода перекрывает только одна микролинза.
Но зачем это нужно? Если посмотреть на традиционную цифровую матрицу под микроскопом, то помимо обычных пикселей мы заметим какие-то странные зоны — вот эти зеленые штучки.
Это датчики фазовой фокусировки. Они необходимы для автофокуса. Кто снимал на зеркальные, помните вот такие зоны фокусировки в видоискателе? Вот это они!
Чем больше таких датчиков, тем быстрее и точнее будет работа автофокуса или AF. Но вот проблема. Они физически занимают место на матрице и отнимают его у нормальных пикселей. А значит, нельзя бесконечно увеличивать количество фазовых пикселей. Потому как если бы на каждый обычный пиксель приходился один фазовый пиксель, то система фокусировки занимала бы процентов 60 от общей площади.
Так было раньше, пока Canon не придумал технологию Dual Pixel. В качестве датчиков фазовой фокусировки они стали использовать обычные пиксели, разделив их на две части! Это позволило все пиксели сделать фазовыми! Опять же все кто пользовался зеркалками, знает какой у Canon крутой автофокус.
Но если у взрослых камер такая технология есть только у Canon, то в смартфонах матрицы с двойными пикселями производит и Samsung, и Sony, поэтому такую систему фокусировки можно встретить в куче смартфонов. В том числе во всех Google Pixel, начиная со второго и в iPhone 11 и 12.
Поэтому фактически в iPhone матрицы 24 мегапиксельные, если считать по количеству фотодиодов. Только полноценными такие 24 Мп конечно назвать нельзя, потому как тут пиксели делят на двоих не только цветовой фильтр, но и макролинзу. Поэтому в таких матрицах пиксели всегда работают в режиме объединения.
Правда есть одно исключение, если в iPhone систему двойных пикселей используют исключительно по назначению то есть для улучшения фокусировки, и, кстати, автофокус в iPhone замечательно работает как в фото, так и в видео, то в Google Pixel при помощи этой технологии научились делать портретные снимки с одной камеры. Они просто берут две фотографии, которые получились с правого и левого фотодиода и, подсчитав насколько сдвинулось изображение, строят карту глубины.
Так к чему я всё это? 12 Мп в iPhone — это осознанный выбор Apple, как и 108 Мп в Galaxy — осознанный выбор Samsung. Каждый из которых даёт свои преимущества и недостатки.
Камеры с высоким разрешением и структурой Quad Bayer или NonaCell — позволяют добиться более высокого разрешения днём и классной светочувствительности ночью. Позволяют проводить съёмку с алгоритмами HDR для фото и видео и вообще могут очень гибко настраиваться под конкретную задачу. Но пока не каждый процессор может справится с обработкой такого количества пикселей, а также, как показали тесты Galaxy S20 Ultra, бывают проблемы с фокусировкой.
Dual Pixel матрицы с низким разрешением вроде бы ничем особо не отличаются от традиционных матриц, но фотографии в низком разрешении проще обрабатывать. А структура Dual Pixel позволяет добиться потрясающей скорости и точности фокусировки.
Тем не менее мир не стоит на месте, Samsung и Sony уже показали новые матрицы с Quad Bayer структурой и двойными пикселями, которые берут лучшее из двух миров. Поэтому в будущем ждем еще более крутые камерофоны в следующем году.
Источник
Зачем в Айфоне 3 камеры: для чего нужна каждая и как переключаться?
Незаметно мобильный телефон получил столько функций, что теперь стал нашим незаменимым помощником в самых разнообразных сферах жизни. И никого уже не удивляет, что все чаще люди предпочитают снимать фотографии на смартфон, а не на навороченный и качественный фотоаппарат. Более того, производители стали устанавливать в телефоны уже и по нескольку модулей камер.
Средний потребитель считает это доказательством прогресса – две камеры лучше, чем одна, а три – лучше, чем две. И лишь скептики вполне резонно задают вопрос: а есть ли смысл в этих модулях? Вопрос звучит вполне резонно. Специалисты утверждают, что современному смартфону необходимо иметь несколько камер для качественной съемки. Мы расскажем, почему это так.
Проблема в нехватке места
Не секрет, что любой хочет видеть свой смартфон максимально тонким. Кому интересны «кирпичики» толщиной более сантиметра? Но маркетинговые требования являются самой настоящей болью для конструкторов. Ведь приходится в ограниченное пространство размещать объемные комплектующие, в том числе объектив фотокамеры. Он по природе своей не может быть компактным. В его состав входят стеклянные линзы разных размеров, которым еще надо двигаться для сбора света, увеличения объекта (тот самый зум) и работы системы стабилизации. В свое время инженеры даже пошли на смелый эксперимент, создав аппарат Samsung Galaxy K Zoom.
Но гибрид фотоаппарата и смартфона откровенно не удался. Гаджет, в котором объектив был стеклянным и действительно качественным, мобильным назвать трудно. Идеи о подборе для линз другого материала провалились – лучше стекла ничто не преломляет свет. Но инженеры нашли выход из технологического тупика.
Дополнительная камера – решение проблемы!
Сейчас эта идея кажется простой и гениальной. Если физически невозможно создать в телефоне один большой объектив с несколькими линзами, то почему бы не разместить в аппарате несколько объективов, каждый с одной линзой? Интересным решением стал выбор разного фокусного расстояния. В результате одна камера сможет делать широкоугольные снимки, а вторая, к примеру, выступит телеобъективом, то есть будет смотреть на мир узко, но зато хорошо приближать предметы.
Обе камеры синхронно снимают одно и то же, а затем в ходе пост-обработки осуществляется программное наложение кадров. Звучит довольно сложно, но программисты реализовали этот алгоритм. И улучшать его оказалось куда проще, чем увеличивать физический размер объектива. Такое решение позволяет и собрать света вдвое больше, получить пару снимков с разной глубиной резкости, а также сделать четкими как темные, так и светлые детали.
Именно такой подход и привел к появлению в смартфонах вторых камер. Первыми на это решились компании LG и Huawei, а окончательно сделала популярной технологию Apple.
Две камеры хорошо, а три – лучше?
Сегодня можно встретить смартфоны уже с тремя и большим числом камер. На самом деле чаще всего эти модули и камерами не являются. Иногда это действительно дополнительный модуль со своим фокусным расстоянием. Например, телефон Light L16 вообще получил 16 камер. Но чаще всего такая «камера» – маркетинговый ход.
Зачастую, кроме самой камеры производители размещают и специальные сенсоры, которые лишь помогают улучшить изображение.
Ниже приводим наиболее распространенные варианты предназначения дополнительных камер в смартфонах:
- Телеобъектив — объектив тоже получил узкое поле зрения, чтобы приближать объекты.
- Широкоугольный (суперщирокоугольный) объектив — еще один объектив для создания широкоугольных снимков.
- Черно-белый сенсор — дает возможность съемки очень резких фотографий, с глубокими тенями и яркими бликами.
- Датчик для ночной съемки — дает возможность съемки четких снимков при условиях плохого освещения и в темноте.
- Сенсор для анализа глубины — с его помощью пара основных объективов делают фотографию с правильной глубиной резкости.
Благодаря дополнительным объективам смартфоны смогли снимать еще лучше, делая яркие и четкие фотографии и все это с сохранением физического размера аппарата. Так что не стоит безоглядно считать второй и последующие модули камер – маркетинговой опцией, число способно влиять на качество. Вполне вероятно, что смартфоны будущего будут плотно покрыты объективами. Во всяком случае, первые ласточки уже есть – смартфоны с пятью камерами, как Huawei Mate 40 Pro Plus, выглядят необычно, но вовсе не кажутся изделиями для гиков.
Три (или четыре?) камеры в iPhone 12 Pro
Для Apple первым смартфоном с тремя модулями камеры стал iPhone 11 Pro, появившийся в 2019 году. Компания не стала спешить и смогла доказать, что такое технологическое решение действительно является эффективным. Однако уже в iPhone 12 Pro вдобавок к трем камерам появился и сканер под названием LiDAR. Разберем, для чего необходим каждый модуль.
Широкоугольная камера в iPhone
Широкоугольный объектив с фокусным расстоянием 26 мм и диафрагмой f/1.6. Эта линза считается основной камерой iPhone.
Часто используется в интерьерной фотографии, позволяя вести съемку в тесном помещении, а также при съемке архитектуры и пейзажей. Обычно угол обзора составляет около 80 градусов. Чем лучше светосила объектива (диафрагма), которая обозначается как f/1.6, например, (чем меньше, тем лучше), тем больше света попадет на матрицу камеры. Тем самым повышая качество съемки в условиях низкой освещенности (в темноте).
Для активации широкоугольной камеры, используйте кнопку 1× в камере iPhone.
Сверхширокоугольная камера в iPhone
Сверхширокоугольный объектив с фокусным расстоянием 13 мм. Чем меньше фокус, тем шире угол обзора. Вторая камера как раз и позволяет осуществить 120-градусный обзор. Подобный объектив дает возможность захватить как можно больше пространства, отлично подходя для съемки пейзажей. Часто так бывает, что, хочется передать все, что находится вокруг. И возможностей обычной камеры тут уже не хватает. Снятое же на сверхширик фото буквально затягивает вас внутрь.
Разница между фото, сделанными на широкоугольную и сверхширокоугольную камеры iPhone 12 Pro:
Снято на широкоугольный объектив iPhone 12 Pro в ночном режиме (на штативе)
Снято на сверхширокоугольный объектив iPhone 12 Pro в ночном режиме (на штативе). Применен фильтр «Нуар» в приложении Фото.
Для активации сверхширокоугольной камеры, используйте кнопку 0,5× в камере iPhone.
Телефото камера в iPhone
Телефотообъектив с фокусным расстоянием 52 мм и диафрагмой f/2.0. Используется для передачи деталей, съемку с оптическим увеличением и для фотографирования портретов.
Для активации телефото камеры, используйте кнопку 2× в камере iPhone.
Сканер LiDAR в iPhone
LiDAR (Light Detection and Ranging – «обнаружение и определение дальности с помощью света»). Эта технология активно используется в геодезии, картографии, где излучателем света является лазер.
Принцип действия LiDAR довольно прост – излучатель испускает световые волны, а приемник получает возращенный от тела отраженный сигнал, при этом учитывается воздействие рассеивающей среды. На основании времени отклика можно определить расстояние до объекта.
LiDAR на iPhone применяется в съемке максимально естественных портретов с натуральным эффектом боке. LiDAR помогает волосам, ушам и другим частям тела человека или животных оставаться в фокусе.
Как переключаться между камерами в iPhone?
Как уже упоминалось выше, для переключения между камерами можно использовать кнопки и шкалу со значением увеличения.
Для переключения на сверхширокоугольную камеру iPhone, нажмите кнопку 0,5×.
Для переключения на широкоугольную камеру iPhone, нажмите кнопку 1×.
Для переключения на телефото камеру iPhone, нажмите кнопку 2×.
Для более тщательной настройки увеличения (уменьшения), нажмите и удерживайте любую из трех кнопок 0,5×, 1× или 2× до появления шкалы.
Вращайте шкалу до необходимого значения фокусного расстояния в мм, соответствующего каждой камере iPhone (см. выше).
Источник